File size: 40,389 Bytes
65bd8af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
import math
from functools import partial
from typing import Optional, Tuple, Union

import huggingface_hub
import omegaconf
import torch
import torch.nn as nn
import torch.nn.functional as F
from causal_conv1d import (
  causal_conv1d_fn,
  causal_conv1d_update,
)
from einops import rearrange, repeat
from mamba_ssm.ops.selective_scan_interface import (
  mamba_inner_fn,
  selective_scan_fn,
)
from torch import Tensor
from transformers import PretrainedConfig, PreTrainedModel
from transformers.modeling_outputs import (
  BaseModelOutputWithNoAttention,
  MaskedLMOutput,
)

try:
  # Legacy mamba-ssm v1 file structure
  from mamba_ssm.ops.triton.layernorm import (
    RMSNorm, layer_norm_fn, rms_norm_fn
  )
except ImportError:
  try:
    # mamba-ssm v2 file structure
    from mamba_ssm.ops.triton.layer_norm import (
      RMSNorm, layer_norm_fn, rms_norm_fn
    )
  except ImportError:
    RMSNorm, layer_norm_fn, rms_norm_fn = None, None, None
from mamba_ssm.ops.triton.selective_state_update import (
  selective_state_update,
)
from mamba_ssm.utils.generation import InferenceParams

from models.dit import (
  LabelEmbedder,
  TimestepEmbedder,
  bias_dropout_add_scale_fused_inference,
  bias_dropout_add_scale_fused_train,
  modulate_fused,
)

class Mamba(nn.Module):
  def __init__(
    self,
    d_model,
    d_state=16,
    d_conv=4,
    expand=2,
    dt_rank='auto',
    dt_min=0.001,
    dt_max=0.1,
    dt_init='random',
    dt_scale=1.0,
    dt_init_floor=1e-4,
    conv_bias=True,
    bias=False,
    use_fast_path=True,  # Fused kernel options
    layer_idx=None,
    device=None,
    dtype=None,
  ):
    factory_kwargs = {'device': device, 'dtype': dtype}
    super().__init__()
    self.d_model = d_model
    self.d_state = d_state
    self.d_conv = d_conv
    self.expand = expand
    self.d_inner = int(self.expand * self.d_model)
    self.dt_rank = math.ceil(self.d_model / 16) if dt_rank == 'auto' else dt_rank
    self.use_fast_path = use_fast_path
    self.layer_idx = layer_idx

    self.in_proj = nn.Linear(
      self.d_model, self.d_inner * 2, bias=bias, **factory_kwargs
    )

    self.conv1d = nn.Conv1d(
      in_channels=self.d_inner,
      out_channels=self.d_inner,
      bias=conv_bias,
      kernel_size=d_conv,
      groups=self.d_inner,
      padding=d_conv - 1,
      **factory_kwargs,
    )

    self.activation = 'silu'
    self.act = nn.SiLU()

    self.x_proj = nn.Linear(
      self.d_inner, self.dt_rank + self.d_state * 2,
      bias=False, **factory_kwargs)
    self.dt_proj = nn.Linear(
      self.dt_rank, self.d_inner,
      bias=True, **factory_kwargs)

    # Initialize special dt projection to preserve variance at initialization
    dt_init_std = self.dt_rank**-0.5 * dt_scale
    if dt_init == 'constant':
      nn.init.constant_(self.dt_proj.weight, dt_init_std)
    elif dt_init == 'random':
      nn.init.uniform_(self.dt_proj.weight, -dt_init_std, dt_init_std)
    else:
      raise NotImplementedError

    # Initialize dt bias so that F.softplus(dt_bias) is between dt_min and dt_max
    dt = torch.exp(
      torch.rand(self.d_inner, **factory_kwargs)
      * (math.log(dt_max) - math.log(dt_min))
      + math.log(dt_min)
    ).clamp(min=dt_init_floor)
    # Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759
    inv_dt = dt + torch.log(-torch.expm1(-dt))
    with torch.no_grad():
      self.dt_proj.bias.copy_(inv_dt)
    # Our initialization would set all Linear.bias to zero, need to mark this one as _no_reinit
    self.dt_proj.bias._no_reinit = True

    # S4D real initialization
    A = repeat(
      torch.arange(1, self.d_state + 1, dtype=torch.float32, device=device),
      'n -> d n',
      d=self.d_inner,
    ).contiguous()
    A_log = torch.log(A)  # Keep A_log in fp32
    self.A_log = nn.Parameter(A_log)
    self.A_log._no_weight_decay = True

    # D 'skip' parameter
    self.D = nn.Parameter(torch.ones(self.d_inner, device=device))  # Keep in fp32
    self.D._no_weight_decay = True

    self.out_proj = nn.Linear(
      self.d_inner, self.d_model, bias=bias, **factory_kwargs
    )

  def forward(self, hidden_states, inference_params=None):
    """
    hidden_states: (B, L, D)
    Returns: same shape as hidden_states
    """
    batch, seqlen, dim = hidden_states.shape

    conv_state, ssm_state = None, None
    if inference_params is not None:
      conv_state, ssm_state = self._get_states_from_cache(
        inference_params, batch)
      if inference_params.seqlen_offset > 0:
        # The states are updated inplace
        out, _, _ = self.step(
          hidden_states, conv_state, ssm_state)
        return out

    # We do matmul and transpose BLH -> HBL at the same time
    xz = rearrange(
      self.in_proj.weight @ rearrange(hidden_states, 'b l d -> d (b l)'),
      'd (b l) -> b d l',
      l=seqlen,
    )
    if self.in_proj.bias is not None:
      xz = xz + rearrange(self.in_proj.bias.to(dtype=xz.dtype), 'd -> d 1')

    A = -torch.exp(self.A_log.float())  # (d_inner, d_state)
    # In the backward pass we write dx and dz next to each other to avoid torch.cat

    if (
      self.use_fast_path
      and causal_conv1d_fn is not None
      and inference_params is None
    ):  # Doesn't support outputting the states
      out = mamba_inner_fn(
        xz,
        self.conv1d.weight,
        self.conv1d.bias,
        self.x_proj.weight,
        self.dt_proj.weight,
        self.out_proj.weight,
        self.out_proj.bias,
        A,
        None,  # input-dependent B
        None,  # input-dependent C
        self.D.float(),
        delta_bias=self.dt_proj.bias.float(),
        delta_softplus=True,
      )

    else:
      x, z = xz.chunk(2, dim=1)
      # Compute short convolution
      if conv_state is not None:
        # If we just take x[:, :, -self.d_conv :], it will error if seqlen < self.d_conv
        # Instead F.pad will pad with zeros if seqlen < self.d_conv, and truncate otherwise.
        conv_state.copy_(
            F.pad(x, (self.d_conv - x.shape[-1], 0))
        )  # Update state (B D W)
      if causal_conv1d_fn is None:
        x = self.act(self.conv1d(x)[..., :seqlen])
      else:
        assert self.activation in ['silu', 'swish']
        x = causal_conv1d_fn(
          x=x,
          weight=rearrange(self.conv1d.weight, 'd 1 w -> d w'),
          bias=self.conv1d.bias,
          activation=self.activation,
          state=conv_state,)

      # We're careful here about the layout, to avoid extra transposes.
      # We want dt to have d as the slowest moving dimension
      # and L as the fastest moving dimension, since those are what the ssm_scan kernel expects.
      x_dbl = self.x_proj(rearrange(x, 'b d l -> (b l) d'))  # (bl d)
      dt, B, C = torch.split(
        x_dbl, [self.dt_rank, self.d_state, self.d_state], dim=-1
      )
      dt = self.dt_proj.weight @ dt.t()
      dt = rearrange(dt, 'd (b l) -> b d l', l=seqlen)
      B = rearrange(B, '(b l) dstate -> b dstate l', l=seqlen).contiguous()
      C = rearrange(C, '(b l) dstate -> b dstate l', l=seqlen).contiguous()

      assert self.activation in ['silu', 'swish']

      y = selective_scan_fn(
        x,
        dt,
        A,
        B,
        C,
        self.D.float(),
        z=z,
        delta_bias=self.dt_proj.bias.float(),
        delta_softplus=True,
        return_last_state=ssm_state is not None,
      )

      if ssm_state is not None:
        y, last_state = y
        ssm_state.copy_(last_state)
      y = rearrange(y, 'b d l -> b l d')

      out = self.out_proj(y)
    return out

  def step(self, hidden_states, conv_state, ssm_state):
    dtype = hidden_states.dtype
    assert (
      hidden_states.shape[1] == 1
    ), 'Only support decoding with 1 token at a time for now'
    xz = self.in_proj(hidden_states.squeeze(1))  # (B 2D)
    x, z = xz.chunk(2, dim=-1)  # (B D)

    # Conv step
    if causal_conv1d_update is None:
      conv_state.copy_(
        torch.roll(conv_state, shifts=-1, dims=-1)
      )  # Update state (B D W)
      conv_state[:, :, -1] = x
      x = torch.sum(
        conv_state * rearrange(self.conv1d.weight, 'd 1 w -> d w'), dim=-1
      )  # (B D)
      if self.conv1d.bias is not None:
        x = x + self.conv1d.bias
      x = self.act(x).to(dtype=dtype)
    else:
      x = causal_conv1d_update(
        x.to(dtype),
        conv_state.to(dtype),
        rearrange(self.conv1d.weight, 'd 1 w -> d w'),
        self.conv1d.bias,
        self.activation,
      )

    x_db = self.x_proj(x)  # (B dt_rank+2*d_state)
    dt, B, C = torch.split(x_db, [self.dt_rank, self.d_state, self.d_state], dim=-1)
    # Don't add dt_bias here
    dt = F.linear(dt, self.dt_proj.weight)  # (B d_inner)
    A = -torch.exp(self.A_log.float())  # (d_inner, d_state)

    # SSM step
    if selective_state_update is None:
      # Discretize A and B
      dt = F.softplus(dt + self.dt_proj.bias.to(dtype=dt.dtype))
      dA = torch.exp(torch.einsum('bd,dn->bdn', dt, A))
      dB = torch.einsum('bd,bn->bdn', dt, B)
      ssm_state.copy_(ssm_state * dA + rearrange(x, 'b d -> b d 1') * dB)
      y = torch.einsum('bdn,bn->bd', ssm_state.to(dtype), C)
      y = y + self.D.to(dtype) * x
      y = y * self.act(z)  # (B D)
    else:
      y = selective_state_update(
        ssm_state,
        x,
        dt,
        A,
        B,
        C,
        self.D,
        z=z,
        dt_bias=self.dt_proj.bias,
        dt_softplus=True,
      )

    out = self.out_proj(y)
    return out.unsqueeze(1), conv_state, ssm_state

  def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
    device = self.out_proj.weight.device
    conv_dtype = self.conv1d.weight.dtype if dtype is None else dtype
    conv_state = torch.zeros(
      batch_size,
      self.d_model * self.expand,
      self.d_conv,
      device=device,
      dtype=conv_dtype,
    )
    ssm_dtype = self.dt_proj.weight.dtype if dtype is None else dtype
    # ssm_dtype = torch.float32
    ssm_state = torch.zeros(
      batch_size,
      self.d_model * self.expand,
      self.d_state,
      device=device,
      dtype=ssm_dtype,
    )
    return conv_state, ssm_state

  def _get_states_from_cache(
    self, inference_params, batch_size, initialize_states=False
  ):
    assert self.layer_idx is not None
    if self.layer_idx not in inference_params.key_value_memory_dict:
      batch_shape = (batch_size,)
      conv_state = torch.zeros(
        batch_size,
        self.d_model * self.expand,
        self.d_conv,
        device=self.conv1d.weight.device,
        dtype=self.conv1d.weight.dtype,
      )
      ssm_state = torch.zeros(
        batch_size,
        self.d_model * self.expand,
        self.d_state,
        device=self.dt_proj.weight.device,
        dtype=self.dt_proj.weight.dtype,
        # dtype=torch.float32,
      )
      inference_params.key_value_memory_dict[self.layer_idx] = (
        conv_state,
        ssm_state,
      )
    else:
      conv_state, ssm_state = inference_params.key_value_memory_dict[
        self.layer_idx
      ]
      # TODO: What if batch size changes between generation, and we reuse the same states?
      if initialize_states:
        conv_state.zero_()
        ssm_state.zero_()
    return conv_state, ssm_state


class Block(nn.Module):
  def __init__(
    self,
    dim,
    mixer_cls,
    norm_cls=nn.LayerNorm,
    fused_add_norm=False,
    residual_in_fp32=False,
    use_adaLN=False,
    cond_dim=0,
  ):
    """
    Simple block wrapping a mixer class with LayerNorm/RMSNorm and residual connection'

    This Block has a slightly different structure compared to a regular
    prenorm Transformer block.
    The standard block is: LN -> MHA/MLP -> Add.
    [Ref: https://arxiv.org/abs/2002.04745]
    Here we have: Add -> LN -> Mixer, returning both
    the hidden_states (output of the mixer) and the residual.
    This is purely for performance reasons, as we can fuse add and LayerNorm.
    The residual needs to be provided (except for the very first block).
    """
    super().__init__()
    self.residual_in_fp32 = residual_in_fp32
    self.fused_add_norm = fused_add_norm
    self.mixer = mixer_cls(dim)
    self.norm = norm_cls(dim)

    if self.fused_add_norm:
      assert RMSNorm is not None, 'RMSNorm import fails'
      assert isinstance(
          self.norm, (nn.LayerNorm, RMSNorm)
      ), 'Only LayerNorm and RMSNorm are supported for fused_add_norm'

    self.dropout = 0.1

    self.use_adaLN = use_adaLN
    self.cond_dim = cond_dim
    if use_adaLN:
      self.adaLN_modulation = nn.Linear(
        cond_dim, 3 * dim, bias=True)
      self.adaLN_modulation.weight.data.zero_()
      self.adaLN_modulation.bias.data.zero_()

  def _get_bias_dropout_scale(self):
    return bias_dropout_add_scale_fused_train if self.training else bias_dropout_add_scale_fused_inference

  def forward(
    self,
    hidden_states: Tensor,
    residual: Optional[Tensor] = None,
    cond_embeds: Optional[Tensor] = None,
    inference_params: Optional[InferenceParams] = None,
  ):
    r"""Pass the input through the encoder layer.

    Args:
      hidden_states: the sequence to the encoder layer (required).
      residual: hidden_states = Mixer(LN(residual))
      cond_embeds: conditional embeddings for modulation (optional).
      inference_params: parameters for inference (optional).
    """
    if not self.fused_add_norm:
      residual = (
        (hidden_states + residual)
        if residual is not None
        else hidden_states
      )

      hidden_states = self.norm(
        residual.to(dtype=self.norm.weight.dtype))
      if self.residual_in_fp32:
        residual = residual.to(torch.float32)
    else:
      fused_add_norm_fn = (
        rms_norm_fn
        if isinstance(self.norm, RMSNorm)
        else layer_norm_fn
      )

      hidden_states, residual = fused_add_norm_fn(
        hidden_states,
        self.norm.weight,
        self.norm.bias,
        residual=residual,
        prenorm=True,
        residual_in_fp32=self.residual_in_fp32,
        eps=self.norm.eps)

    if self.use_adaLN and cond_embeds is not None:
      (shift_msa,
       scale_msa,
       gate_msa) = self.adaLN_modulation(
          cond_embeds)[:, None].chunk(3, dim=-1)
      hidden_states = modulate_fused(hidden_states,
                                     shift_msa,
                                     scale_msa)
    else:
      gate_msa = None

    mixer_out = self.mixer(hidden_states, inference_params=inference_params)

    hidden_states = mixer_out
    if self.use_adaLN and cond_embeds is not None:
      bias_dropout_scale_fn = self._get_bias_dropout_scale()
      hidden_states = bias_dropout_scale_fn(
        hidden_states,
        None,
        gate_msa,
        residual,
        self.dropout)

    return hidden_states, residual

  def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
    return self.mixer.allocate_inference_cache(
      batch_size, max_seqlen, dtype=dtype, **kwargs)


class BiMambaConfig(PretrainedConfig):
  """Config that extends the original MambaConfig with params relevant to bi-directionality."""

  model_type = 'bimamba'

  def __init__(
    self,
    # From original MambaConfig
    d_model: int = 2560,
    n_layer: int = 64,
    vocab_size: int = 50277,
    ssm_cfg: Optional[dict] = None,
    rms_norm: bool = True,
    residual_in_fp32: bool = True,
    fused_add_norm: bool = True,
    pad_vocab_size_multiple: int = 8,
    tie_word_embeddings: bool = True,
    # Not in original MambaConfig, but default arg in create_block in mamba_ssm repo; used in layer norm
    norm_epsilon: float = 1e-5,
    # Used in init_weights
    initializer_cfg: Optional[dict] = None,
    # Caduceus-specific params
    bidirectional: bool = True,
    bidirectional_strategy: Union[str, None] = 'add',
    bidirectional_weight_tie: bool = True,
    use_adaLN: bool = True,
    cond_dim: int = 128,
    **kwargs,
  ):
    super().__init__(**kwargs)
    self.d_model = d_model
    self.n_layer = n_layer
    self.vocab_size = vocab_size
    self.ssm_cfg = ssm_cfg
    self.rms_norm = rms_norm
    self.residual_in_fp32 = residual_in_fp32
    self.fused_add_norm = fused_add_norm
    self.pad_vocab_size_multiple = pad_vocab_size_multiple
    self.tie_word_embeddings = tie_word_embeddings
    self.norm_epsilon = norm_epsilon
    self.initializer_cfg = initializer_cfg
    self.bidirectional = bidirectional
    self.bidirectional_strategy = bidirectional_strategy
    self.bidirectional_weight_tie = bidirectional_weight_tie
    self.use_adaLN = use_adaLN
    self.cond_dim = cond_dim

def create_block(
  d_model,
  ssm_cfg=None,
  norm_epsilon=1e-5,
  rms_norm=False,
  residual_in_fp32=False,
  fused_add_norm=False,
  layer_idx=None,
  bidirectional=True,
  bidirectional_strategy='add',
  bidirectional_weight_tie=True,
  device=None,
  dtype=None,
  use_adaLN=False,
  cond_dim=0,
):
  """Create BiMamba block.

  Adapted from: https://github.com/state-spaces/mamba/blob/main/mamba_ssm/models/mixer_seq_simple.py
  """
  if ssm_cfg is None:
    ssm_cfg = {}
  factory_kwargs = {'device': device, 'dtype': dtype}
  bidirectional_kwargs = {
    'bidirectional': bidirectional,
    'bidirectional_strategy': bidirectional_strategy,
    'bidirectional_weight_tie': bidirectional_weight_tie,
  }
  mixer_cls = partial(
    BiMambaWrapper,
    layer_idx=layer_idx,
    **ssm_cfg,
    **bidirectional_kwargs,
    **factory_kwargs,
  )
  norm_cls = partial(
    nn.LayerNorm if not rms_norm else RMSNorm, eps=norm_epsilon, **factory_kwargs
  )
  block_cls = Block
  block = block_cls(
    d_model,
    mixer_cls,
    norm_cls=norm_cls,
    fused_add_norm=fused_add_norm,
    residual_in_fp32=residual_in_fp32,
    use_adaLN=use_adaLN,
    cond_dim=cond_dim,
  )
  block.layer_idx = layer_idx

  return block


class BiMambaWrapper(nn.Module):
  """Thin wrapper around Mamba to support bi-directionality."""

  def __init__(
    self,
    d_model: int,
    bidirectional: bool = True,
    bidirectional_strategy: Optional[str] = 'add',
    bidirectional_weight_tie: bool = True,
    **mamba_kwargs,
  ):
    super().__init__()
    if bidirectional and bidirectional_strategy is None:
      bidirectional_strategy = 'add'  # Default strategy: `add`
    if bidirectional and bidirectional_strategy not in ['add', 'ew_multiply']:
      raise NotImplementedError(
        f'`{bidirectional_strategy}` strategy for bi-directionality is not implemented!'
      )
    self.bidirectional = bidirectional
    self.bidirectional_strategy = bidirectional_strategy

    self.mamba_fwd = Mamba(d_model=d_model, **mamba_kwargs)

    self.mamba_rev = None
    if bidirectional:
      self.mamba_rev = Mamba(d_model=d_model, **mamba_kwargs)
      if bidirectional_weight_tie:  # Tie in and out projections (where most of param count lies)
        self.mamba_rev.in_proj.weight = self.mamba_fwd.in_proj.weight
        self.mamba_rev.in_proj.bias = self.mamba_fwd.in_proj.bias
        self.mamba_rev.out_proj.weight = self.mamba_fwd.out_proj.weight
        self.mamba_rev.out_proj.bias = self.mamba_fwd.out_proj.bias
    else:
      self.mamba_rev = None

  def forward(self, hidden_states, inference_params=None):
    """Bidirectional-enabled forward pass

    hidden_states: (B, L, D)
    Returns: same shape as hidden_states
    """

    out = self.mamba_fwd(
    hidden_states, inference_params=inference_params,)

    if self.bidirectional:
      if inference_params is not None:
        raise NotImplementedError(
          'Passing `inference_params` not supported '
          'for bidirectional Mamba.')

      hidden_states_flipped = torch.flip(hidden_states, dims=(1,))

      out_rev = self.mamba_rev(
        hidden_states_flipped,  # Flip along the sequence length dimension
        inference_params=inference_params,)

      out_rev_flipped = torch.flip(out_rev, dims=(1,))
      if self.bidirectional_strategy == 'add':
        out = out + out_rev_flipped  # Flip back for combining with forward hidden states
      elif self.bidirectional_strategy == 'ew_multiply':
        out = out * out_rev_flipped
      else:
        raise NotImplementedError(
          f"`{self.bidirectional_strategy}` for "
          f"bi-directionality not implemented!")
    return out

  def allocate_inference_cache(
    self, batch_size, max_seqlen, dtype=None, **kwargs):
    if self.bidirectional:
      raise NotImplementedError(
        'Allocating inference cache not supported '
        'for bidirectional Mamba.')
    return self.mamba_fwd.allocate_inference_cache(
      batch_size, max_seqlen, dtype=dtype, **kwargs)


class BiMambaEmbeddings(nn.Module):
  def __init__(
      self,
      config: BiMambaConfig,
      input_dim=None,
      device=None,
      dtype=None,
  ):
    super().__init__()
    factory_kwargs = {'device': device, 'dtype': dtype}
    if input_dim is None:
        input_dim = config.vocab_size
    self.word_embeddings = nn.Embedding(
        input_dim, config.d_model, **factory_kwargs
    )

  def forward(self, input_ids):
    """
    input_ids: (batch, seqlen)
    """
    return self.word_embeddings(input_ids)


class BiMambaMixerModel(nn.Module):
  def __init__(
    self,
    config: BiMambaConfig,
    device=None,
    dtype=None,
  ) -> None:
    super().__init__()
    factory_kwargs = {'device': device, 'dtype': dtype}
    self.config = config
    input_dim = config.vocab_size
    d_model = config.d_model

    self.fused_add_norm = config.fused_add_norm
    self.residual_in_fp32 = config.residual_in_fp32

    self.embeddings = BiMambaEmbeddings(
      config, input_dim=input_dim, **factory_kwargs)

    # Mamba changes the order of residual and layer norm:
    # Instead of LN -> Attn / MLP -> Add, we do:
    # Add -> LN -> Attn / MLP / Mixer, returning both the residual branch (output of Add) and
    # the main branch (output of MLP / Mixer). The model definition is unchanged.
    # This is for performance reason: we can fuse add + layer_norm.
    if config.fused_add_norm:
      if layer_norm_fn is None or rms_norm_fn is None:
        raise ImportError('Failed to import Triton LayerNorm / RMSNorm kernels')

    self.layers = nn.ModuleList(
      [
        create_block(
          d_model,
          ssm_cfg=config.ssm_cfg,
          norm_epsilon=config.norm_epsilon,
          rms_norm=config.rms_norm,
          residual_in_fp32=config.residual_in_fp32,
          fused_add_norm=config.fused_add_norm,
          layer_idx=i,
          bidirectional=config.bidirectional,
          bidirectional_strategy=config.bidirectional_strategy,
          bidirectional_weight_tie=config.bidirectional_weight_tie,
          use_adaLN=config.use_adaLN,
          cond_dim=config.cond_dim,
          **factory_kwargs,
        )
        for i in range(config.n_layer)
      ]
    )

    if config.use_adaLN:
      self.adaLN_modulation_final = nn.Linear(
        config.cond_dim, 2 * d_model, bias=True)
      self.adaLN_modulation_final.weight.data.zero_()
      self.adaLN_modulation_final.bias.data.zero_()
    else:
      self.adaLN_modulation_final = None

    norm_f = (nn.LayerNorm if not config.rms_norm else RMSNorm)(
      d_model, eps=config.norm_epsilon, **factory_kwargs)
    self.norm_f = norm_f

  def forward(
    self,
    input_ids: torch.LongTensor,
    inputs_embeds: Optional[torch.FloatTensor] = None,
    hidden_states: Optional[torch.FloatTensor] = None,
    output_hidden_states: Optional[bool] = None,
    cond_embeds: Optional[torch.Tensor] = None,
    inference_params: Optional[InferenceParams] = None
  ):

    """Mixer forward."""
    all_hidden_states = []
    if hidden_states is None:
      if inputs_embeds is not None:
        hidden_states = inputs_embeds
      else:
        if input_ids.ndim == 2:  # indices (B, L)
          hidden_states = self.embeddings(input_ids)
        else:  # one-hots (B, L, V)
          hidden_states = F.linear(
            input_ids.to(torch.float),
            self.embeddings.word_embeddings.weight.T)

      residual = None
      for ind, layer in enumerate(self.layers):
        if output_hidden_states:
            all_hidden_states.append(hidden_states)
        # TODO: Add support for gradient checkpointing
        layer_out = layer(
          hidden_states, residual,
          inference_params=inference_params,
          cond_embeds=cond_embeds
        )

        hidden_states, residuals = layer_out

      if not self.fused_add_norm:
        if self.config.use_adaLN:
          raise NotImplementedError('adaln only implemented for fused_add_norm')
        residual = (
          (hidden_states + residual) if residual is not None else hidden_states
        )
        hidden_states = self.norm_f(residual.to(dtype=self.norm_f.weight.dtype))
      else:
        if cond_embeds is not None and self.config.use_adaLN:
          shift, scale = self.adaLN_modulation_final(
            cond_embeds)[:, None].chunk(2, dim=2)
        else:
          shift, scale = None, None

        fused_add_norm_fn = (
          rms_norm_fn if isinstance(self.norm_f, RMSNorm) else layer_norm_fn
        )

        # Set prenorm=False here since we don't need the residual
        hidden_states = fused_add_norm_fn(
          hidden_states,
          self.norm_f.weight,
          self.norm_f.bias,
          eps=self.norm_f.eps,
          residual=residual,
          prenorm=False,
          residual_in_fp32=self.residual_in_fp32,
        )
        if cond_embeds is not None and self.config.use_adaLN:
          hidden_states = modulate_fused(hidden_states, shift, scale)
    else:
      if cond_embeds is not None and self.config.use_adaLN:
        shift, scale = self.adaLN_modulation_final(
          cond_embeds)[:, None].chunk(2, dim=2)
        hidden_states = modulate_fused(hidden_states, shift, scale)

    if output_hidden_states:
      all_hidden_states.append(hidden_states)

    return hidden_states, all_hidden_states

  def allocate_inference_cache(
    self, batch_size, max_seqlen, dtype=None, **kwargs):
    return {
      i: layer.allocate_inference_cache(
        batch_size, max_seqlen, dtype=dtype, **kwargs)
      for i, layer in enumerate(self.layers)
    }


def cross_entropy(logits, y, ignore_index=-100):
  """Cross-entropy loss."""
  logits = logits.view(-1, logits.shape[-1])
  y = y.view(-1)
  return F.cross_entropy(logits, y, ignore_index=ignore_index)


def weighted_cross_entropy(logits, y, loss_weights, ignore_index=-100):
  """Weighted cross-entropy loss (discounts certain tokens)."""
  logits = logits.view(-1, logits.shape[-1])
  y = y.view(-1)
  ce = F.cross_entropy(logits, y, ignore_index=ignore_index, reduction='none')
  loss_weights = loss_weights.view(-1)
  loss_weights[y == ignore_index] = 0.0
  return (ce * (loss_weights / loss_weights.sum())).sum()


class BiMambaPreTrainedModel(PreTrainedModel):
  """PreTrainedModel wrapper for BiMamba backbone."""

  config_class = BiMambaConfig
  base_model_prefix = 'bimamba'
  supports_gradient_checkpointing = False
  _no_split_modules = ['BiMambaWrapper']

  def _init_weights(
    self,
    module,
    initializer_range=0.02,  # Now only used for embedding layer.
    **kwargs,
  ):
    """Adapted from: https://github.com/state-spaces/mamba/blob/main/mamba_ssm/models/mixer_seq_simple.py"""

    n_layer = self.config.n_layer
    initialized_cfg = self.config.initializer_cfg if self.config.initializer_cfg is not None else {}
    rescale_prenorm_residual = initialized_cfg.get('rescale_prenorm_residual', True)
    initializer_range = initialized_cfg.get('initializer_range', initializer_range)
    n_residuals_per_layer = initialized_cfg.get('n_residuals_per_layer', 1)

    if isinstance(module, nn.Linear):
      if module.bias is not None:
        if not getattr(module.bias, '_no_reinit', False):
          nn.init.zeros_(module.bias)
    elif isinstance(module, nn.Embedding):
      nn.init.normal_(module.weight, std=initializer_range)

    if rescale_prenorm_residual:
      # Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
      #   > A modified initialization which accounts for the accumulation on the residual path with model depth.
      #   > Scale the weights of residual layers at initialization by a factor of 1/√N where N is the # of
      #   residual layers.
      #   >   -- GPT-2 :: https://openai.com/blog/better-language-models/
      #
      # Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
      for name, p in module.named_parameters():
        if name in ['out_proj.weight', 'fc2.weight']:
          # Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
          # Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
          # We need to reinit p since this code could be called multiple times
          # Having just p *= scale would repeatedly scale it down
          nn.init.kaiming_uniform_(p, a=math.sqrt(5))
          with torch.no_grad():
            p /= math.sqrt(n_residuals_per_layer * n_layer)


class BiMamba(BiMambaPreTrainedModel):
  """BiMamba model that can be instantiated using HF patterns."""

  def __init__(self, config: BiMambaConfig, device=None, dtype=None, **kwargs):
    super().__init__(config)

    # Adjust vocab size if vocab padding is set.
    if config.vocab_size % config.pad_vocab_size_multiple != 0:
      config.vocab_size += config.pad_vocab_size_multiple - (
        config.vocab_size % config.pad_vocab_size_multiple
      )

    self.config = config
    factory_kwargs = {'device': device, 'dtype': dtype}
    self.backbone = BiMambaMixerModel(config, **factory_kwargs, **kwargs)

  def forward(
    self,
    input_ids: torch.LongTensor = None,
    inputs_embeds: Optional[torch.FloatTensor] = None,
    hidden_states: Optional[torch.FloatTensor] = None,
    output_hidden_states: Optional[bool] = None,
    return_dict: Optional[bool] = None,
    cond_embeds: Optional[torch.Tensor] = None,
    inference_params: Optional[InferenceParams] = None,
  ) -> Union[torch.Tensor, Tuple, BaseModelOutputWithNoAttention]:
    """HF-compatible forward method."""
    output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict

    backbone_out = self.backbone(
      input_ids,
      inputs_embeds=inputs_embeds,
      hidden_states=hidden_states,
      output_hidden_states=output_hidden_states,
      cond_embeds=cond_embeds,
      inference_params=inference_params,
    )

    hidden_states, all_hidden_states = backbone_out

    if return_dict:
      return BaseModelOutputWithNoAttention(
        last_hidden_state=hidden_states,
        hidden_states=all_hidden_states if output_hidden_states else None,
      )
    elif output_hidden_states:
      return hidden_states, all_hidden_states
    else:
      return hidden_states


class BiMambaForMaskedLM(BiMambaPreTrainedModel):
  """HF-compatible BiMamba model for masked language modeling."""

  def __init__(self, config: BiMambaConfig, device=None, dtype=None, **kwargs):
    super().__init__(config, **kwargs)
    factory_kwargs = {'device': device, 'dtype': dtype}
    self.bimamba = BiMamba(config, **factory_kwargs, **kwargs)
    self.config = config
    lm_head_in_dim = config.d_model
    # LM head may only take in concatenated timestep embeddings
    # if its weights are not tied to the vocab embedding
    self.lm_head = nn.Linear(
      lm_head_in_dim,
      self.config.vocab_size,  # Use BiMamba config as it might have been updated
      bias=False,
      **factory_kwargs,
    )
    # Initialize weights and apply final processing
    self.post_init()
    if self.config.tie_word_embeddings:
      self.tie_weights()

  def init_weights(self):
    """
    If needed prunes and maybe initializes weights. If using a custom `PreTrainedModel`, you need to implement any
    initialization logic in `_init_weights`.
    """

    # Initialize weights
    self.apply(self._initialize_weights)

    # Tie weights should be skipped when not initializing all weights
    # since from_pretrained(...) calls tie weights anyway.

  def post_init(self):
    """
    A method executed at the end of each Transformer model initialization, to execute code that needs the model's
    modules properly initialized (such as weight initialization).
    """
    self.init_weights()
    self._backward_compatibility_gradient_checkpointing()

  def get_input_embeddings(self):
    return self.bimamba.backbone.embeddings.word_embeddings

  def set_input_embeddings(self, value):
    self.bimamba.backbone.embeddings.word_embeddings = value

  def get_output_embeddings(self):
    return self.lm_head

  def set_output_embeddings(self, new_embeddings):
    """Overrides output embeddings."""
    self.lm_head = new_embeddings

  def tie_weights(self):
    """Tie weights."""
    super().tie_weights()

  def get_encoder(self):
    """Get encoder (backbone) for the model."""
    return self.bimamba

  def set_encoder(self, encoder):
    """Set encoder (backbone) for the model."""
    self.bimamba = encoder

  def forward(
    self,
    input_ids: torch.LongTensor = None,
    inputs_embeds: Optional[torch.FloatTensor] = None,
    hidden_states: Optional[torch.FloatTensor] = None,
    labels: Optional[torch.LongTensor] = None,
    loss_weights: Optional[torch.FloatTensor] = None,
    output_hidden_states: Optional[bool] = None,
    return_dict: Optional[bool] = None,
    cond_embeds: Optional[torch.FloatTensor] = None,
    inference_params: Optional[InferenceParams] = None,
    num_last_tokens: int = 0
  ) -> Union[Tuple, MaskedLMOutput]:
    """HF-compatible forward method."""

    output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict

    # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
    outputs = self.bimamba(
      input_ids=input_ids,
      inputs_embeds=inputs_embeds,
      hidden_states=hidden_states,
      output_hidden_states=output_hidden_states,
      return_dict=return_dict,
      cond_embeds=cond_embeds,
      inference_params=inference_params,
    )
    hidden_states = outputs[0]

    if num_last_tokens > 0:
      hidden_states = hidden_states[:, -num_last_tokens:]
    logits = self.lm_head(hidden_states)

    loss = None
    if labels is not None:
      if loss_weights is not None:
        loss = weighted_cross_entropy(
          logits, labels, loss_weights, ignore_index=self.config.pad_token_id
        )
      else:
        loss = cross_entropy(
          logits, labels, ignore_index=self.config.pad_token_id
        )

    if not return_dict:
      output = (logits,) + outputs[1:]
      return (loss,) + output if loss is not None else output

    return MaskedLMOutput(
      loss=loss,
      logits=logits,
      hidden_states=outputs.hidden_states,)


class DiMamba(nn.Module, huggingface_hub.PyTorchModelHubMixin):
  def __init__(self, config, vocab_size: int, pad_token_id: int):
    super().__init__()
    if type(config) == dict:
      config = omegaconf.OmegaConf.create(config)

    if config.parameterization == 'ar':
      self.sigma_map = None
    else:
      self.sigma_map = TimestepEmbedder(config.model.cond_dim)
    if (config.training.guidance is not None or  # Training for / using CFG
        (hasattr(config, 'guidance')
         and config.guidance is not None
         and config.guidance.method == 'cfg')):
      self.cond_map = LabelEmbedder(
        config.data.num_classes + 1,  # +1 for mask
        config.model.cond_dim)
    else:
      self.cond_map = None

    mamba_config = BiMambaConfig(
      d_model=config.model.hidden_size,
      n_layer=config.model.n_blocks,
      pad_token_id=pad_token_id,
      vocab_size=vocab_size,
      pad_vocab_size_multiple=1,
      tie_word_embeddings=config.model.tie_word_embeddings,
      bidirectional=getattr(config.model, 'bidirectional', True),
      bidirectional_strategy=getattr(config.model, 'bidirectional_strategy', 'add'),
      bidirectional_weight_tie=getattr(config.model, 'bidirectional_weight_tie', True),
      use_adaLN=self.sigma_map is not None or self.cond_map is not None,
      cond_dim=config.model.cond_dim,
    )

    self.model = BiMambaForMaskedLM(config=mamba_config)

  def _get_bias_dropout_scale(self):
    if self.training:
      return bias_dropout_add_scale_fused_train
    else:
      return bias_dropout_add_scale_fused_inference

  def forward(
    self,
    indices,
    sigma,
    cond=None,
    x_emb=None,
    return_hidden_states=False,
    inference_params=None
  ):
    c = None
    if self.sigma_map is not None:
      c = F.silu(self.sigma_map(sigma))
    if cond is not None:
      if self.cond_map is None:
        raise ValueError("Conditioning variable provided, "
                         "but Model was not initialized "
                         "with condition embedding layer.")
      else:
        c = c + F.silu(self.cond_map(cond)) if c is not None \
          else F.silu(self.cond_map(cond))

    with torch.cuda.amp.autocast(dtype=torch.bfloat16):
      model_out = self.model(
        indices,
        hidden_states=x_emb,
        cond_embeds=c,
        output_hidden_states=return_hidden_states,
        inference_params=inference_params
      )

    if return_hidden_states:
      return model_out.logits, model_out.hidden_states
    return model_out.logits


class DiMambaClassifier(nn.Module):
  def __init__(self, config, vocab_size: int, pad_token_id: int):
    super().__init__()
    if type(config) == dict:
      config = omegaconf.OmegaConf.create(config)

    if config.parameterization == 'ar':
      self.sigma_map = None
    else:
      self.sigma_map = TimestepEmbedder(config.classifier_model.cond_dim)

    mamba_config = BiMambaConfig(
      d_model=config.classifier_model.hidden_size,
      n_layer=config.classifier_model.n_blocks,
      pad_token_id=pad_token_id,
      vocab_size=vocab_size,
      pad_vocab_size_multiple=1,
      tie_word_embeddings=config.classifier_model.tie_word_embeddings,
      bidirectional=getattr(config.classifier_model, 'bidirectional', True),
      bidirectional_strategy=getattr(config.classifier_model, 'bidirectional_strategy', 'add'),
      bidirectional_weight_tie=getattr(config.classifier_model, 'bidirectional_weight_tie', True),
      use_adaLN=self.sigma_map is not None,
      cond_dim=config.classifier_model.cond_dim,
    )

    self.model = BiMamba(config=mamba_config)
    self.pooling = getattr(config.classifier_model, 'pooling', 'mean')
    self.output_layer = nn.Linear(
      config.classifier_model.hidden_size,
      config.classifier_model.num_classes)

  def _get_bias_dropout_scale(self):
    if self.training:
      return bias_dropout_add_scale_fused_train
    else:
      return bias_dropout_add_scale_fused_inference

  def forward(
    self,
    indices_or_one_hots,
    sigma,
    x_emb=None,
    attention_mask=None
  ):
    c = None
    if self.sigma_map is not None:
      c = F.silu(self.sigma_map(sigma))

    with torch.cuda.amp.autocast(dtype=torch.bfloat16):
      x = self.model(
        indices_or_one_hots,
        hidden_states=x_emb,
        cond_embeds=c,
        output_hidden_states=False,
        inference_params=None
      )[0]

    with torch.cuda.amp.autocast(dtype=torch.bfloat16):
      if self.pooling == 'mean':
        x = x.mean(dim=1)
      elif self.pooling == 'max':
        x = x.max(dim=1)
      elif self.pooling == 'cls':
        x = x[..., 0]
      elif self.pooling == 'last':
        x = x[..., -1]
      elif self.pooling == 'no_pooling':  # used for ar_fudge
        pass
      elif self.pooling == 'attention_mean':  # used for ar_pplm
        masked_x = x * attention_mask.unsqueeze(2)
        x = torch.sum(masked_x, dim=1) / (
              torch.sum(attention_mask, dim=1,
                        keepdim=True) + 1e-15)
      else:
        raise NotImplementedError(
          f"`{self.pooling}` method not implemented.")
      x = self.output_layer(x)
    return x

  def load_pretrained_encoder(self, encoder: nn.Module):
    self.sigma_map = encoder.sigma_map
    self.model = encoder.model.bimamba