File size: 8,942 Bytes
65bd8af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
import torch
from torch.utils.data import DataLoader, Subset
from torch.optim import AdamW
import torch.nn.functional as F
import torch.nn as nn
from datasets import load_from_disk
import esm
import numpy as np
import math
import os
from transformers import AutoTokenizer
from torch.optim.lr_scheduler import CosineAnnealingLR
from transformers import get_linear_schedule_with_warmup
from tqdm import tqdm
from torch.cuda.amp import autocast, GradScaler
import gc
import pdb
import pandas as pd
from collections import defaultdict
os.environ['CUDA_VISIBLE_DEVICES'] = '1'
from ppl import *
##################### Hyper-parameters #############################################
binders = ['RPPGPAPARRLYA', 'KKKVAAKLLDLST', 'SQVKVVKYFLTKR', 'NGRPKHKVYLYLK', 'SLGTEIILDTMNK', 'CPGGIRCCAGSYG', 'MPPRSRPNSLPDG', 'ATEVELVTNILYR', 'WLYDRITSVDLSA', 'RPPPPMKAKKRPD', 'KSPPKSRPRPRLH', 'LQGVIGIR<eos>LILA', 'TGNVFVHIQHFPE', 'QDAEEAIYELAAI', 'TSYCKILSVETCA', 'TLRRPEYKKLRLD', 'KSKSEVSTQLQNQ', 'AASSSKKNDLQAS', 'ATGKAPRGPRKTG', 'AKWLIVRASRPCP', 'SPRKQRRSRTASA', 'SICQQCFWSSSED', 'KRNLAIRPSLVAP', 'AACAVEQPWSCCC', 'ADKYRSFTDKFLT', 'VGNFEVVDDKFNK', 'NEEVALKWTVHTS', 'AERQRVRRLLCGP', 'KPKKKNPMEKLHD', 'EEEDEETYEGLFE', 'KRKVTMTPLRQSS', 'RCGGGRYGFRRYQ', 'ARCRPLYGRFKCV', 'CQATFGCSWRFAD', 'LQGLLRLLSDSDD', 'GRSRAGPPAAAIN', 'NTLPNFPKSMLSS']
wildtype = 'MAEYLASIFGTEKDKVNCSFYFKIGACRHGDRCSRLHNKPTFSQTIALLNIYRNPQNSSQSADGLRCAVSDVEMQEHYDEFFEEVFTEMEEKYGEVEEMNVCDNLGDHLVGNVYVKFRREEDAEKAVIDLNNRWFNGQPIHAELSPVTDFREACCRQYEMGECTRGGFCNFMHLKPISRELRRELYGRRRKKHRSRSRSRERRSRSRDRGRGGGGGGGGGGGGRERDRRRSRDRERSGRF'
mutant = 'MAEYLASIFGTEKDKVNCSFYFKIGACRHGDRCFRLHNKPTFSQTIALLNIYRNPQNSSQSADGLRCAVSDVEMQEHYDEFFEEVFTEMEEKYGEVEEMNVCDNLGDHLVGNVYVKFRREEDAEKAVIDLNNRWFNGQPIHAELSPVTDFREACCRQYEMGECTRGGFCNFMHLKPISRELRRELYGRRRKKHRSRSRSRERRSRSRDRGRGGGGGGGGGGGGRERDRRRSRDRERSGRF'
n_heads = 4
d_k = 32
d_v = 32
checkpoint_path = '/home/tc415/muPPIt_embedding/checkpoints/mutBind_small'
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
####################################################################################
vhse8_values = {
'A': [0.15, -1.11, -1.35, -0.92, 0.02, -0.91, 0.36, -0.48],
'R': [-1.47, 1.45, 1.24, 1.27, 1.55, 1.47, 1.30, 0.83],
'N': [-0.99, 0.00, 0.69, -0.37, -0.55, 0.85, 0.73, -0.80],
'D': [-1.15, 0.67, -0.41, -0.01, -2.68, 1.31, 0.03, 0.56],
'C': [0.18, -1.67, -0.21, 0.00, 1.20, -1.61, -0.19, -0.41],
'Q': [-0.96, 0.12, 0.18, 0.16, 0.09, 0.42, -0.20, -0.41],
'E': [-1.18, 0.40, 0.10, 0.36, -2.16, -0.17, 0.91, 0.36],
'G': [-0.20, -1.53, -2.63, 2.28, -0.53, -1.18, -1.34, 1.10],
'H': [-0.43, -0.25, 0.37, 0.19, 0.51, 1.28, 0.93, 0.65],
'I': [1.27, 0.14, 0.30, -1.80, 0.30, -1.61, -0.16, -0.13],
'L': [1.36, 0.07, 0.26, -0.80, 0.22, -1.37, 0.08, -0.62],
'K': [-1.17, 0.70, 0.80, 1.64, 0.67, 1.63, 0.13, -0.01],
'M': [1.01, -0.53, 0.43, 0.00, 0.23, 0.10, -0.86, -0.68],
'F': [1.52, 0.61, 0.95, -0.16, 0.25, 0.28, -1.33, -0.65],
'P': [0.22, -0.17, -0.50, -0.05, 0.01, -1.34, 0.19, 3.56],
'S': [-0.67, -0.86, -1.07, -0.41, -0.32, 0.27, -0.64, 0.11],
'T': [-0.34, -0.51, -0.55, -1.06, 0.01, -0.01, -0.79, 0.39],
'W': [1.50, 2.06, 1.79, 0.75, 0.75, 0.13, -1.06, -0.85],
'Y': [0.61, 1.60, 1.17, 0.73, 0.53, 0.25, -0.96, -0.52],
'V': [0.76, -0.92, 0.17, -1.91, 0.22, -1.40, -0.24, -0.03],
}
aa_to_idx = {'A': 5, 'R': 10, 'N': 17, 'D': 13, 'C': 23, 'Q': 16, 'E': 9, 'G': 6, 'H': 21, 'I': 12, 'L': 4, 'K': 15, 'M': 20, 'F': 18, 'P': 14, 'S': 8, 'T': 11, 'W': 22, 'Y': 19, 'V': 7}
vhse8_tensor = torch.zeros(33, 8)
for aa, values in vhse8_values.items():
aa_index = aa_to_idx[aa]
vhse8_tensor[aa_index] = torch.tensor(values)
vhse8_tensor = vhse8_tensor.to(device)
vhse8_tensor.requires_grad = False
class MutBind(torch.nn.Module):
def __init__(self, d_node, d_k, d_v, n_heads, lr):
super(MutBind, self).__init__()
self.esm, self.alphabet = esm.pretrained.esm2_t33_650M_UR50D()
for param in self.esm.parameters():
param.requires_grad = False
self.q = nn.Linear(d_node, n_heads * d_k)
self.k = nn.Linear(d_node, n_heads * d_k)
self.v = nn.Linear(d_node, n_heads * d_v)
self.layer_norm = torch.nn.LayerNorm(n_heads * d_v)
self.map = torch.nn.Sequential(
torch.nn.Linear(n_heads * d_v, (n_heads * d_v) // 2),
torch.nn.SiLU(),
torch.nn.Linear((n_heads * d_v) // 2, (n_heads * d_v) // 4),
torch.nn.SiLU(),
torch.nn.Linear((n_heads * d_v) // 4, 2)
)
self.learning_rate = lr
self.n_heads = n_heads
self.d_k = d_k
self.d_v = d_v
self.d_node = d_node
def forward(self, binder_tokens, wt_tokens, mut_tokens):
global vhse8_tensor
with torch.no_grad():
binder_pad_mask = (binder_tokens != self.alphabet.padding_idx).int()
binder_embed = self.esm(binder_tokens, repr_layers=[33], return_contacts=False)["representations"][33] * binder_pad_mask.unsqueeze(-1)
binder_vhse8 = vhse8_tensor[binder_tokens]
binder_embed = torch.concat([binder_embed, binder_vhse8], dim=-1)
mut_pad_mask = (mut_tokens != self.alphabet.padding_idx).int()
mut_embed = self.esm(mut_tokens, repr_layers=[33], return_contacts=False)["representations"][33] * mut_pad_mask.unsqueeze(-1)
mut_vhse8 = vhse8_tensor[mut_tokens]
mut_embed = torch.concat([mut_embed, mut_vhse8], dim=-1)
wt_pad_mask = (wt_tokens != self.alphabet.padding_idx).int()
wt_embed = self.esm(wt_tokens, repr_layers=[33], return_contacts=False)["representations"][33] * wt_pad_mask.unsqueeze(-1)
wt_vhse8 = vhse8_tensor[wt_tokens]
wt_embed = torch.concat([wt_embed, wt_vhse8], dim=-1)
# binder_embed = binder_embed.transpose(0,1)
# mut_embed = mut_embed.transpose(0,1)
# wt_embed = wt_embed.transpose(0,1)
binder_wt_reciprocal = self.cross_attention(binder_embed, wt_embed)
binder_mut_reciprocal = self.cross_attention(binder_embed, mut_embed)
binder_wt_reciprocal = self.layer_norm(binder_wt_reciprocal).mean(dim=1)
binder_mut_reciprocal = self.layer_norm(binder_mut_reciprocal).mean(dim=1)
difference = binder_wt_reciprocal - binder_mut_reciprocal # (B, d_node)
logits = self.map(difference) # (B, 2)
return logits
def cross_attention(self, embed_1, embed_2):
B, L1, _ = embed_1.shape
_, L2, _ = embed_2.shape
Q = self.q(embed_1).view(B, L1, self.n_heads, self.d_k) # (B, L1, n_heads, d_k)
K = self.k(embed_2).view(B, L2, self.n_heads, self.d_k) # (B, L2, n_heads, d_k)
V = self.v(embed_2).view(B, L2, self.n_heads, self.d_v) # (B, L2, n_heads, d_v)
Q = Q.transpose(1, 2) # (B, n_heads, L1, d_k)
K = K.transpose(1, 2) # (B, n_heads, L2, d_k)
V = V.transpose(1, 2) # (B, n_heads, L2, d_v)
attention_scores = torch.matmul(Q, K.transpose(-2, -1)) / (self.d_k ** 0.5) # (B, n_heads, L1, L2)
attention_weights = F.softmax(attention_scores, dim=-1) # (B, n_heads, L1, L2)
output = torch.matmul(attention_weights, V) # (B, n_heads, L1, d_v)
output = output.transpose(1, 2).contiguous().view(B, L1, self.n_heads * self.d_v) # (B, L1, n_heads * d_v)
return output
tokenizer = AutoTokenizer.from_pretrained("facebook/esm2_t33_650M_UR50D")
def predict(model, binder, wildtype, mutant):
global tokenizer
binder_tokens = torch.tensor(tokenizer(binder)['input_ids']).unsqueeze(0).to(device)
wt_tokens = torch.tensor(tokenizer(wildtype)['input_ids']).unsqueeze(0).to(device)
mut_tokens = torch.tensor(tokenizer(mutant)['input_ids']).unsqueeze(0).to(device)
logits = model.forward(binder_tokens, wt_tokens, mut_tokens)
return F.softmax(logits).squeeze()
model = MutBind(d_node=1288, d_k=d_k, d_v=d_v, n_heads=n_heads, lr=None).to(device)
model.load_state_dict(torch.load(checkpoint_path))
model.eval()
good = []
for binder in binders:
prob = predict(model, binder, wildtype, mutant)
# pdb.set_trace()
if prob[0].item() > 0.5:
print(f"{binder} -> WILDTYPE: {prob[0].item():.4f}\n")
else:
print(f"{binder} -> MUTANT: {prob[1].item():.4f}\n")
good.append(binder)
print(f"Good:\n{good}")
final = []
for binder in good:
wt_ppl = compute_pseudo_perplexity(pepmlm, tokenizer, wildtype, binder)
mut_ppl = compute_pseudo_perplexity(pepmlm, tokenizer, mutant, binder)
print(f"{binder}:\n{wt_ppl}\n{mut_ppl}\n")
if wt_ppl > mut_ppl:
final.append(binder)
print(f"Final:\n{final}")
num = 0
for i in range(len(wildtype)):
if wildtype[i] != mutant[i]:
num += 1
print(f"Pos {i+1}: {wildtype[i]} -> {mutant[i]}")
print(f"\n# Mutations = {num}")
|