File size: 10,128 Bytes
65bd8af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import torch
from torch.utils.data import DataLoader, Subset
from torch.optim import AdamW
import torch.nn.functional as F
import torch.nn as nn
from datasets import load_from_disk
import esm
import numpy as np
import math
import os
from transformers import AutoTokenizer
from torch.optim.lr_scheduler import CosineAnnealingLR
from transformers import get_linear_schedule_with_warmup
from tqdm import tqdm
from torch.cuda.amp import autocast, GradScaler
import gc
import pdb

os.environ['CUDA_VISIBLE_DEVICES'] = '1'

##################### Hyper-parameters #############################################
max_epochs = 30
batch_size = 4
lr = 1e-4
dropout = 0.1
margin = 20
accumulation_steps = 16
num_heads = 4
checkpoint_path = '/home/tc415/muPPIt_embedding/checkpoints/improved_train_5/epoch=28_acc=0.59'
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

print(f"Checkpoint path = {checkpoint_path}")
####################################################################################

vhse8_values = {
    'A': [0.15, -1.11, -1.35, -0.92, 0.02, -0.91, 0.36, -0.48],
    'R': [-1.47, 1.45, 1.24, 1.27, 1.55, 1.47, 1.30, 0.83],
    'N': [-0.99, 0.00, 0.69, -0.37, -0.55, 0.85, 0.73, -0.80],
    'D': [-1.15, 0.67, -0.41, -0.01, -2.68, 1.31, 0.03, 0.56],
    'C': [0.18, -1.67, -0.21, 0.00, 1.20, -1.61, -0.19, -0.41],
    'Q': [-0.96, 0.12, 0.18, 0.16, 0.09, 0.42, -0.20, -0.41],
    'E': [-1.18, 0.40, 0.10, 0.36, -2.16, -0.17, 0.91, 0.36],
    'G': [-0.20, -1.53, -2.63, 2.28, -0.53, -1.18, -1.34, 1.10],
    'H': [-0.43, -0.25, 0.37, 0.19, 0.51, 1.28, 0.93, 0.65],
    'I': [1.27, 0.14, 0.30, -1.80, 0.30, -1.61, -0.16, -0.13],
    'L': [1.36, 0.07, 0.26, -0.80, 0.22, -1.37, 0.08, -0.62],
    'K': [-1.17, 0.70, 0.80, 1.64, 0.67, 1.63, 0.13, -0.01],
    'M': [1.01, -0.53, 0.43, 0.00, 0.23, 0.10, -0.86, -0.68],
    'F': [1.52, 0.61, 0.95, -0.16, 0.25, 0.28, -1.33, -0.65],
    'P': [0.22, -0.17, -0.50, -0.05, 0.01, -1.34, 0.19, 3.56],
    'S': [-0.67, -0.86, -1.07, -0.41, -0.32, 0.27, -0.64, 0.11],
    'T': [-0.34, -0.51, -0.55, -1.06, 0.01, -0.01, -0.79, 0.39],
    'W': [1.50, 2.06, 1.79, 0.75, 0.75, 0.13, -1.06, -0.85],
    'Y': [0.61, 1.60, 1.17, 0.73, 0.53, 0.25, -0.96, -0.52],
    'V': [0.76, -0.92, 0.17, -1.91, 0.22, -1.40, -0.24, -0.03],
}

aa_to_idx = {'A': 5, 'R': 10, 'N': 17, 'D': 13, 'C': 23, 'Q': 16, 'E': 9, 'G': 6, 'H': 21, 'I': 12, 'L': 4, 'K': 15, 'M': 20, 'F': 18, 'P': 14, 'S': 8, 'T': 11, 'W': 22, 'Y': 19, 'V': 7}

vhse8_tensor = torch.zeros(24, 8)
for aa, values in vhse8_values.items():
    aa_index = aa_to_idx[aa]
    vhse8_tensor[aa_index] = torch.tensor(values)
    
vhse8_tensor = vhse8_tensor.to(device)
vhse8_tensor.requires_grad = False

test_dataset = load_from_disk('/home/tc415/muPPIt_embedding/dataset/test/ppiref_skempi_2')  #16689, 16609, 17465
tokenizer = AutoTokenizer.from_pretrained("facebook/esm2_t33_650M_UR50D")

def collate_fn(batch):
    # Unpack the batch
    binders = []
    mutants = []
    wildtypes = []
    affs = []
    
    global tokenizer

    for b in batch:
        binder = torch.tensor(b['binder_input_ids']['input_ids'][1:-1])
        mutant = torch.tensor(b['mutant_input_ids']['input_ids'][1:-1])
        wildtype = torch.tensor(b['wildtype_input_ids']['input_ids'][1:-1])

        if binder.dim() == 0 or binder.numel() == 0 or mutant.dim() == 0 or mutant.numel() == 0 or wildtype.dim() == 0 or wildtype.numel() == 0:
            continue
        binders.append(binder)  # shape: 1*L1 -> L1
        mutants.append(mutant)  # shape: 1*L2 -> L2
        wildtypes.append(wildtype)  # shape: 1*L3 -> L3

        affs.append(b['aff'])

    
    # Collate the tensors using torch's pad_sequence
    try:
        binder_input_ids = torch.nn.utils.rnn.pad_sequence(binders, batch_first=True, padding_value=tokenizer.pad_token_id)

        mutant_input_ids = torch.nn.utils.rnn.pad_sequence(mutants, batch_first=True, padding_value=tokenizer.pad_token_id)

        wildtype_input_ids = torch.nn.utils.rnn.pad_sequence(wildtypes, batch_first=True, padding_value=tokenizer.pad_token_id)
    except:
        pdb.set_trace()

    affs = torch.tensor(affs)
    # Return the collated batch
    return {
        'binder_input_ids': binder_input_ids.int(),
        'mutant_input_ids': mutant_input_ids.int(),
        'wildtype_input_ids': wildtype_input_ids.int(),
        'aff': affs
    }

class muPPIt(torch.nn.Module):
    def __init__(self, d_node, num_heads, margin, lr, device):
        super(muPPIt, self).__init__()

        self.esm, self.alphabet = esm.pretrained.esm2_t33_650M_UR50D()
        for param in self.esm.parameters():
            param.requires_grad = False

        self.attention = torch.nn.MultiheadAttention(embed_dim=d_node, num_heads=num_heads)
        self.layer_norm = torch.nn.LayerNorm(d_node)

        self.map = torch.nn.Sequential(
            torch.nn.Linear(d_node, d_node // 2), 
            torch.nn.SiLU(),
            torch.nn.Linear(d_node // 2, 1)
        )

        for layer in self.map:
            if isinstance(layer, nn.Linear): 
                nn.init.kaiming_uniform_(layer.weight, a=0, mode='fan_in', nonlinearity='leaky_relu')
                if layer.bias is not None:
                    nn.init.zeros_(layer.bias)

        self.margin = margin
        self.learning_rate = lr
        self.loss_threshold = 20  # Set a threshold for identifying hard examples

        self.device = device

        # Easy and hard example tracking
        self.easy_example_indices = np.load('/home/tc415/muPPIt_embedding/dataset/ppiref_index.npy').tolist()
        self.hard_example_indices = np.load('/home/tc415/muPPIt_embedding/dataset/skempi_index.npy').tolist()

    def forward(self, binder_tokens, wt_tokens, mut_tokens):
        device = self.device

        global vhse8_tensor

        with torch.no_grad():
            binder_pad_mask = (binder_tokens != self.alphabet.padding_idx).int()
            binder_embed = self.esm(binder_tokens, repr_layers=[33], return_contacts=True)["representations"][33] * binder_pad_mask.unsqueeze(-1)
            binder_vhse8 = vhse8_tensor[binder_tokens]
            binder_embed = torch.concat([binder_embed, binder_vhse8], dim=-1)

            mut_pad_mask = (mut_tokens != self.alphabet.padding_idx).int()
            mut_embed = self.esm(mut_tokens, repr_layers=[33], return_contacts=True)["representations"][33] * mut_pad_mask.unsqueeze(-1)
            mut_vhse8 = vhse8_tensor[mut_tokens]
            mut_embed = torch.concat([mut_embed, mut_vhse8], dim=-1)
            
            wt_pad_mask = (wt_tokens != self.alphabet.padding_idx).int()
            wt_embed = self.esm(wt_tokens, repr_layers=[33], return_contacts=True)["representations"][33] * wt_pad_mask.unsqueeze(-1)
            wt_vhse8 = vhse8_tensor[wt_tokens]
            wt_embed = torch.concat([wt_embed, wt_vhse8], dim=-1)

        binder_wt = torch.concat([binder_embed, wt_embed], dim=1)
        binder_mut = torch.concat([binder_embed, mut_embed], dim=1)

        binder_wt = binder_wt.transpose(0,1)
        binder_mut = binder_mut.transpose(0,1)

        binder_wt_attn, _ = self.attention(binder_wt, binder_wt, binder_wt)
        binder_mut_attn, _ = self.attention(binder_mut, binder_mut, binder_mut)

        binder_wt_attn = binder_wt + binder_wt_attn
        binder_mut_attn = binder_mut + binder_mut_attn

        binder_wt_attn = binder_wt_attn.transpose(0, 1)
        binder_mut_attn = binder_mut_attn.transpose(0, 1)

        binder_wt_attn = self.layer_norm(binder_wt_attn)
        binder_mut_attn = self.layer_norm(binder_mut_attn)

        mapped_binder_wt = self.map(binder_wt_attn).squeeze(-1)      # B*(L1+L2)
        mapped_binder_mut = self.map(binder_mut_attn).squeeze(-1)     # B*(L1+L2)

        distance = torch.sqrt(torch.sum((mapped_binder_wt - mapped_binder_mut) ** 2, dim=-1))
        return distance

    def compute_loss(self, binder_tokens, wt_tokens, mut_tokens, aff):
        distance = self.forward(binder_tokens, wt_tokens, mut_tokens)

        # Loss computation
        upper_loss = F.relu(distance - self.margin * (aff + 1))    # let distance < aff + 1
        lower_loss = F.relu(self.margin * aff - distance)          # let distance > aff
        loss = upper_loss + lower_loss

        loss_weights = torch.ones_like(loss) 
        hard_example_mask = loss > self.loss_threshold
        loss_weights[hard_example_mask] = 2.0  # Double the weight for hard examples
        weighted_loss = loss * loss_weights

        return weighted_loss.mean(), distance

    def step(self, batch, compute_acc=False):
        binder_tokens = batch['binder_input_ids']
        mut_tokens = batch['mutant_input_ids']
        wt_tokens = batch['wildtype_input_ids']
        aff = batch['aff']

        binder_tokens = binder_tokens.to(device)
        wt_tokens = wt_tokens.to(device)
        mut_tokens = mut_tokens.to(device)
        aff = aff.to(self.device)

        loss, distance = self.compute_loss(binder_tokens, wt_tokens, mut_tokens, aff)

        if compute_acc:
            global margin
            accuracy = torch.sum(torch.logical_and(torch.ge(distance, margin * aff), torch.le(distance, self.margin *(aff + 1))))
            return loss, accuracy
        else:
            return loss


def test(model, test_dataset, batch_size):
    test_loader = DataLoader(test_dataset, batch_size=batch_size, collate_fn=collate_fn, shuffle=False, num_workers=4)

    test_loss = 0.0
    test_acc = 0.0
    with torch.no_grad():
        for batch in tqdm(test_loader, total=len(test_loader)):
            batch = {k: v.cuda(non_blocking=True) for k, v in batch.items()}
            test_loss_batch, test_acc_batch = model.step(batch, compute_acc=True)
            test_loss += test_loss_batch.item()
            test_acc += test_acc_batch.item()

    print(f"Test Loss = {test_loss / len(test_loader)}\tTest Acc = {test_acc / len(test_dataset)}")


model = muPPIt(d_node=1288, num_heads=num_heads, margin=margin, lr=lr, device=device).to(device)
model.load_state_dict(torch.load(checkpoint_path))
model.eval()

test(model, test_dataset, batch_size=batch_size)