File size: 10,128 Bytes
65bd8af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
import torch
from torch.utils.data import DataLoader, Subset
from torch.optim import AdamW
import torch.nn.functional as F
import torch.nn as nn
from datasets import load_from_disk
import esm
import numpy as np
import math
import os
from transformers import AutoTokenizer
from torch.optim.lr_scheduler import CosineAnnealingLR
from transformers import get_linear_schedule_with_warmup
from tqdm import tqdm
from torch.cuda.amp import autocast, GradScaler
import gc
import pdb
os.environ['CUDA_VISIBLE_DEVICES'] = '1'
##################### Hyper-parameters #############################################
max_epochs = 30
batch_size = 4
lr = 1e-4
dropout = 0.1
margin = 20
accumulation_steps = 16
num_heads = 4
checkpoint_path = '/home/tc415/muPPIt_embedding/checkpoints/improved_train_5/epoch=28_acc=0.59'
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(f"Checkpoint path = {checkpoint_path}")
####################################################################################
vhse8_values = {
'A': [0.15, -1.11, -1.35, -0.92, 0.02, -0.91, 0.36, -0.48],
'R': [-1.47, 1.45, 1.24, 1.27, 1.55, 1.47, 1.30, 0.83],
'N': [-0.99, 0.00, 0.69, -0.37, -0.55, 0.85, 0.73, -0.80],
'D': [-1.15, 0.67, -0.41, -0.01, -2.68, 1.31, 0.03, 0.56],
'C': [0.18, -1.67, -0.21, 0.00, 1.20, -1.61, -0.19, -0.41],
'Q': [-0.96, 0.12, 0.18, 0.16, 0.09, 0.42, -0.20, -0.41],
'E': [-1.18, 0.40, 0.10, 0.36, -2.16, -0.17, 0.91, 0.36],
'G': [-0.20, -1.53, -2.63, 2.28, -0.53, -1.18, -1.34, 1.10],
'H': [-0.43, -0.25, 0.37, 0.19, 0.51, 1.28, 0.93, 0.65],
'I': [1.27, 0.14, 0.30, -1.80, 0.30, -1.61, -0.16, -0.13],
'L': [1.36, 0.07, 0.26, -0.80, 0.22, -1.37, 0.08, -0.62],
'K': [-1.17, 0.70, 0.80, 1.64, 0.67, 1.63, 0.13, -0.01],
'M': [1.01, -0.53, 0.43, 0.00, 0.23, 0.10, -0.86, -0.68],
'F': [1.52, 0.61, 0.95, -0.16, 0.25, 0.28, -1.33, -0.65],
'P': [0.22, -0.17, -0.50, -0.05, 0.01, -1.34, 0.19, 3.56],
'S': [-0.67, -0.86, -1.07, -0.41, -0.32, 0.27, -0.64, 0.11],
'T': [-0.34, -0.51, -0.55, -1.06, 0.01, -0.01, -0.79, 0.39],
'W': [1.50, 2.06, 1.79, 0.75, 0.75, 0.13, -1.06, -0.85],
'Y': [0.61, 1.60, 1.17, 0.73, 0.53, 0.25, -0.96, -0.52],
'V': [0.76, -0.92, 0.17, -1.91, 0.22, -1.40, -0.24, -0.03],
}
aa_to_idx = {'A': 5, 'R': 10, 'N': 17, 'D': 13, 'C': 23, 'Q': 16, 'E': 9, 'G': 6, 'H': 21, 'I': 12, 'L': 4, 'K': 15, 'M': 20, 'F': 18, 'P': 14, 'S': 8, 'T': 11, 'W': 22, 'Y': 19, 'V': 7}
vhse8_tensor = torch.zeros(24, 8)
for aa, values in vhse8_values.items():
aa_index = aa_to_idx[aa]
vhse8_tensor[aa_index] = torch.tensor(values)
vhse8_tensor = vhse8_tensor.to(device)
vhse8_tensor.requires_grad = False
test_dataset = load_from_disk('/home/tc415/muPPIt_embedding/dataset/test/ppiref_skempi_2') #16689, 16609, 17465
tokenizer = AutoTokenizer.from_pretrained("facebook/esm2_t33_650M_UR50D")
def collate_fn(batch):
# Unpack the batch
binders = []
mutants = []
wildtypes = []
affs = []
global tokenizer
for b in batch:
binder = torch.tensor(b['binder_input_ids']['input_ids'][1:-1])
mutant = torch.tensor(b['mutant_input_ids']['input_ids'][1:-1])
wildtype = torch.tensor(b['wildtype_input_ids']['input_ids'][1:-1])
if binder.dim() == 0 or binder.numel() == 0 or mutant.dim() == 0 or mutant.numel() == 0 or wildtype.dim() == 0 or wildtype.numel() == 0:
continue
binders.append(binder) # shape: 1*L1 -> L1
mutants.append(mutant) # shape: 1*L2 -> L2
wildtypes.append(wildtype) # shape: 1*L3 -> L3
affs.append(b['aff'])
# Collate the tensors using torch's pad_sequence
try:
binder_input_ids = torch.nn.utils.rnn.pad_sequence(binders, batch_first=True, padding_value=tokenizer.pad_token_id)
mutant_input_ids = torch.nn.utils.rnn.pad_sequence(mutants, batch_first=True, padding_value=tokenizer.pad_token_id)
wildtype_input_ids = torch.nn.utils.rnn.pad_sequence(wildtypes, batch_first=True, padding_value=tokenizer.pad_token_id)
except:
pdb.set_trace()
affs = torch.tensor(affs)
# Return the collated batch
return {
'binder_input_ids': binder_input_ids.int(),
'mutant_input_ids': mutant_input_ids.int(),
'wildtype_input_ids': wildtype_input_ids.int(),
'aff': affs
}
class muPPIt(torch.nn.Module):
def __init__(self, d_node, num_heads, margin, lr, device):
super(muPPIt, self).__init__()
self.esm, self.alphabet = esm.pretrained.esm2_t33_650M_UR50D()
for param in self.esm.parameters():
param.requires_grad = False
self.attention = torch.nn.MultiheadAttention(embed_dim=d_node, num_heads=num_heads)
self.layer_norm = torch.nn.LayerNorm(d_node)
self.map = torch.nn.Sequential(
torch.nn.Linear(d_node, d_node // 2),
torch.nn.SiLU(),
torch.nn.Linear(d_node // 2, 1)
)
for layer in self.map:
if isinstance(layer, nn.Linear):
nn.init.kaiming_uniform_(layer.weight, a=0, mode='fan_in', nonlinearity='leaky_relu')
if layer.bias is not None:
nn.init.zeros_(layer.bias)
self.margin = margin
self.learning_rate = lr
self.loss_threshold = 20 # Set a threshold for identifying hard examples
self.device = device
# Easy and hard example tracking
self.easy_example_indices = np.load('/home/tc415/muPPIt_embedding/dataset/ppiref_index.npy').tolist()
self.hard_example_indices = np.load('/home/tc415/muPPIt_embedding/dataset/skempi_index.npy').tolist()
def forward(self, binder_tokens, wt_tokens, mut_tokens):
device = self.device
global vhse8_tensor
with torch.no_grad():
binder_pad_mask = (binder_tokens != self.alphabet.padding_idx).int()
binder_embed = self.esm(binder_tokens, repr_layers=[33], return_contacts=True)["representations"][33] * binder_pad_mask.unsqueeze(-1)
binder_vhse8 = vhse8_tensor[binder_tokens]
binder_embed = torch.concat([binder_embed, binder_vhse8], dim=-1)
mut_pad_mask = (mut_tokens != self.alphabet.padding_idx).int()
mut_embed = self.esm(mut_tokens, repr_layers=[33], return_contacts=True)["representations"][33] * mut_pad_mask.unsqueeze(-1)
mut_vhse8 = vhse8_tensor[mut_tokens]
mut_embed = torch.concat([mut_embed, mut_vhse8], dim=-1)
wt_pad_mask = (wt_tokens != self.alphabet.padding_idx).int()
wt_embed = self.esm(wt_tokens, repr_layers=[33], return_contacts=True)["representations"][33] * wt_pad_mask.unsqueeze(-1)
wt_vhse8 = vhse8_tensor[wt_tokens]
wt_embed = torch.concat([wt_embed, wt_vhse8], dim=-1)
binder_wt = torch.concat([binder_embed, wt_embed], dim=1)
binder_mut = torch.concat([binder_embed, mut_embed], dim=1)
binder_wt = binder_wt.transpose(0,1)
binder_mut = binder_mut.transpose(0,1)
binder_wt_attn, _ = self.attention(binder_wt, binder_wt, binder_wt)
binder_mut_attn, _ = self.attention(binder_mut, binder_mut, binder_mut)
binder_wt_attn = binder_wt + binder_wt_attn
binder_mut_attn = binder_mut + binder_mut_attn
binder_wt_attn = binder_wt_attn.transpose(0, 1)
binder_mut_attn = binder_mut_attn.transpose(0, 1)
binder_wt_attn = self.layer_norm(binder_wt_attn)
binder_mut_attn = self.layer_norm(binder_mut_attn)
mapped_binder_wt = self.map(binder_wt_attn).squeeze(-1) # B*(L1+L2)
mapped_binder_mut = self.map(binder_mut_attn).squeeze(-1) # B*(L1+L2)
distance = torch.sqrt(torch.sum((mapped_binder_wt - mapped_binder_mut) ** 2, dim=-1))
return distance
def compute_loss(self, binder_tokens, wt_tokens, mut_tokens, aff):
distance = self.forward(binder_tokens, wt_tokens, mut_tokens)
# Loss computation
upper_loss = F.relu(distance - self.margin * (aff + 1)) # let distance < aff + 1
lower_loss = F.relu(self.margin * aff - distance) # let distance > aff
loss = upper_loss + lower_loss
loss_weights = torch.ones_like(loss)
hard_example_mask = loss > self.loss_threshold
loss_weights[hard_example_mask] = 2.0 # Double the weight for hard examples
weighted_loss = loss * loss_weights
return weighted_loss.mean(), distance
def step(self, batch, compute_acc=False):
binder_tokens = batch['binder_input_ids']
mut_tokens = batch['mutant_input_ids']
wt_tokens = batch['wildtype_input_ids']
aff = batch['aff']
binder_tokens = binder_tokens.to(device)
wt_tokens = wt_tokens.to(device)
mut_tokens = mut_tokens.to(device)
aff = aff.to(self.device)
loss, distance = self.compute_loss(binder_tokens, wt_tokens, mut_tokens, aff)
if compute_acc:
global margin
accuracy = torch.sum(torch.logical_and(torch.ge(distance, margin * aff), torch.le(distance, self.margin *(aff + 1))))
return loss, accuracy
else:
return loss
def test(model, test_dataset, batch_size):
test_loader = DataLoader(test_dataset, batch_size=batch_size, collate_fn=collate_fn, shuffle=False, num_workers=4)
test_loss = 0.0
test_acc = 0.0
with torch.no_grad():
for batch in tqdm(test_loader, total=len(test_loader)):
batch = {k: v.cuda(non_blocking=True) for k, v in batch.items()}
test_loss_batch, test_acc_batch = model.step(batch, compute_acc=True)
test_loss += test_loss_batch.item()
test_acc += test_acc_batch.item()
print(f"Test Loss = {test_loss / len(test_loader)}\tTest Acc = {test_acc / len(test_dataset)}")
model = muPPIt(d_node=1288, num_heads=num_heads, margin=margin, lr=lr, device=device).to(device)
model.load_state_dict(torch.load(checkpoint_path))
model.eval()
test(model, test_dataset, batch_size=batch_size)
|