Update muppit/calculate_steps.py
Browse files- muppit/calculate_steps.py +72 -0
muppit/calculate_steps.py
CHANGED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
|
3 |
+
|
4 |
+
# def calculate_steps_per_epoch(total_samples, batch_size_per_gpu, num_gpus, scheduling):
|
5 |
+
# # Calculate total batch size across all GPUs
|
6 |
+
# total_batch_size = batch_size_per_gpu * num_gpus
|
7 |
+
#
|
8 |
+
# # Calculate total batches per epoch
|
9 |
+
# batches_per_epoch = math.ceil(total_samples / total_batch_size)
|
10 |
+
#
|
11 |
+
# steps_per_epoch = []
|
12 |
+
# current_accumulation_factor = 1 # Default accumulation factor
|
13 |
+
#
|
14 |
+
# for epoch in range(max(scheduling.keys()) + 1):
|
15 |
+
# # Update accumulation factor if it's defined for the current epoch
|
16 |
+
# if epoch in scheduling:
|
17 |
+
# current_accumulation_factor = scheduling[epoch]
|
18 |
+
#
|
19 |
+
# effective_steps = math.ceil(batches_per_epoch / current_accumulation_factor)
|
20 |
+
# steps_per_epoch.append(effective_steps)
|
21 |
+
#
|
22 |
+
# return steps_per_epoch
|
23 |
+
|
24 |
+
def calculate_total_steps(total_samples, batch_size, num_gpus, accumulation_schedule, max_epochs):
|
25 |
+
total_steps = 0
|
26 |
+
|
27 |
+
for epoch in range(max_epochs):
|
28 |
+
# Determine the accumulation steps for the current epoch
|
29 |
+
for start_epoch, steps in accumulation_schedule.items():
|
30 |
+
if start_epoch > epoch:
|
31 |
+
break
|
32 |
+
accumulation_steps = steps
|
33 |
+
|
34 |
+
effective_batch_size = batch_size * num_gpus * accumulation_steps
|
35 |
+
steps_per_epoch = (total_samples + effective_batch_size - 1) // effective_batch_size
|
36 |
+
|
37 |
+
total_steps += steps_per_epoch
|
38 |
+
print(f'Epoch {epoch}: {steps_per_epoch} steps (accumulation_steps={accumulation_steps})')
|
39 |
+
|
40 |
+
return total_steps
|
41 |
+
|
42 |
+
|
43 |
+
total_samples = 4804 # Replace with the actual number of samples in your dataset
|
44 |
+
batch_size = 32
|
45 |
+
num_gpus = 1
|
46 |
+
accumulation_schedule = {0: 4, 3: 3, 10: 2}
|
47 |
+
max_epochs = 20
|
48 |
+
|
49 |
+
total_steps = calculate_total_steps(total_samples, batch_size, num_gpus, accumulation_schedule, max_epochs)
|
50 |
+
print(f"Total Steps: {total_steps}")
|
51 |
+
|
52 |
+
# total_samples = 309503 # Replace with the actual number of samples in your dataset
|
53 |
+
# batch_size = 32
|
54 |
+
# num_gpus = 7
|
55 |
+
# accumulation_schedule = {0: 4, 2: 2, 7: 1}
|
56 |
+
# max_epochs = 10
|
57 |
+
#
|
58 |
+
# total_steps = calculate_total_steps(total_samples, batch_size, num_gpus, accumulation_schedule, max_epochs)
|
59 |
+
# print(f"Total Steps: {total_steps}")
|
60 |
+
|
61 |
+
#
|
62 |
+
# # Example usage
|
63 |
+
# total_samples = 309503
|
64 |
+
# batch_size_per_gpu = 16
|
65 |
+
# num_gpus = 7
|
66 |
+
# scheduling = {0: 4, 5: 3, 10: 2, 13: 1}
|
67 |
+
#
|
68 |
+
# steps_per_epoch = calculate_steps_per_epoch(total_samples, batch_size_per_gpu, num_gpus, scheduling)
|
69 |
+
# for epoch, steps in enumerate(steps_per_epoch):
|
70 |
+
# print(f"Epoch {epoch}: {steps} steps")
|
71 |
+
#
|
72 |
+
# print(f"Total steps: {sum(steps_per_epoch)}")
|