Delete siamese
Browse files- siamese/siamese_ppi_decoy.py +0 -187
siamese/siamese_ppi_decoy.py
DELETED
@@ -1,187 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import pdb
|
3 |
-
import torch
|
4 |
-
import torch.nn as nn
|
5 |
-
import torch.optim as optim
|
6 |
-
from torch.utils.data import Dataset, DataLoader
|
7 |
-
from transformers import EsmModel, EsmTokenizer
|
8 |
-
from sklearn.model_selection import train_test_split
|
9 |
-
import pandas as pd
|
10 |
-
from peft import BOFTConfig, get_peft_model
|
11 |
-
from datasets import load_from_disk
|
12 |
-
import time
|
13 |
-
|
14 |
-
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'
|
15 |
-
|
16 |
-
# Hyperparameters
|
17 |
-
HYPERPARAMS = {
|
18 |
-
'learning_rate': 0.001,
|
19 |
-
'batch_size': 32,
|
20 |
-
'num_epochs': 10,
|
21 |
-
# 'boft_block_size': 8,
|
22 |
-
# 'boft_n_butterfly_factor': 1,
|
23 |
-
# 'boft_dropout': 0.1,
|
24 |
-
# 'boft_bias': 'boft_only',
|
25 |
-
# 'boft_modules_to_save': [], # List any specific modules to save if needed
|
26 |
-
# 'boft_target_modules': ["query", "value", "key", "output.dense", "mlp.fc1", "mlp.fc2"],
|
27 |
-
'margin': 1.0
|
28 |
-
}
|
29 |
-
|
30 |
-
|
31 |
-
# Siamese NN
|
32 |
-
class SiameseNetwork(nn.Module):
|
33 |
-
def __init__(self, encoder):
|
34 |
-
super(SiameseNetwork, self).__init__()
|
35 |
-
self.encoder = encoder
|
36 |
-
self.embedding_dim = encoder.config.hidden_size
|
37 |
-
self.projection = nn.Linear(self.embedding_dim * 2, self.embedding_dim)
|
38 |
-
|
39 |
-
def forward(self, target_tokens, binder_tokens, decoy_tokens):
|
40 |
-
target_embedding = self.encoder(**target_tokens).last_hidden_state[:, 0, :]
|
41 |
-
binder_embedding = self.encoder(**binder_tokens).last_hidden_state[:, 0, :]
|
42 |
-
decoy_embedding = self.encoder(**decoy_tokens).last_hidden_state[:, 0, :]
|
43 |
-
|
44 |
-
# Compute joint embeddings
|
45 |
-
anchor_embedding = torch.cat((target_embedding, binder_embedding), dim=-1)
|
46 |
-
positive_embedding = torch.cat((binder_embedding, target_embedding), dim=-1)
|
47 |
-
negative_embedding = torch.cat((decoy_embedding, binder_embedding), dim=-1)
|
48 |
-
|
49 |
-
# Project joint embeddings back to original dimensions
|
50 |
-
anchor_embedding = self.projection(anchor_embedding)
|
51 |
-
positive_embedding = self.projection(positive_embedding)
|
52 |
-
negative_embedding = self.projection(negative_embedding)
|
53 |
-
|
54 |
-
return anchor_embedding, positive_embedding, negative_embedding
|
55 |
-
|
56 |
-
|
57 |
-
# Generate scores for candidate binders
|
58 |
-
def generate_scores(siamese_net, tokenizer, target_seq, candidate_binders, decoy_seq):
|
59 |
-
siamese_net.eval()
|
60 |
-
scores = []
|
61 |
-
|
62 |
-
with torch.no_grad():
|
63 |
-
target_tokens = tokenizer(target_seq, return_tensors="pt", padding=True, truncation=True).to(device)
|
64 |
-
decoy_tokens = tokenizer(decoy_seq, return_tensors="pt", padding=True, truncation=True).to(device)
|
65 |
-
|
66 |
-
for binder_seq in candidate_binders:
|
67 |
-
binder_tokens = tokenizer(binder_seq, return_tensors="pt", padding=True, truncation=True).to(device)
|
68 |
-
target_embedding, binder_embedding, decoy_embedding = siamese_net(target_tokens, binder_tokens, decoy_tokens)
|
69 |
-
target_binder_similarity = torch.cosine_similarity(target_embedding, binder_embedding)
|
70 |
-
target_decoy_similarity = torch.cosine_similarity(target_embedding, decoy_embedding)
|
71 |
-
score = target_binder_similarity - target_decoy_similarity
|
72 |
-
scores.append(score.item())
|
73 |
-
|
74 |
-
return scores
|
75 |
-
|
76 |
-
|
77 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
78 |
-
distributed = torch.cuda.device_count() > 1
|
79 |
-
|
80 |
-
|
81 |
-
# Load the pre-trained ESM-2-650M model and tokenizer
|
82 |
-
model_name = "facebook/esm2_t33_650M_UR50D"
|
83 |
-
tokenizer = EsmTokenizer.from_pretrained(model_name)
|
84 |
-
model = EsmModel.from_pretrained(model_name)
|
85 |
-
|
86 |
-
siamese_ppi_net = SiameseNetwork(model).to(device)
|
87 |
-
if distributed:
|
88 |
-
siamese_ppi_net = torch.nn.DataParallel(siamese_ppi_net)
|
89 |
-
|
90 |
-
|
91 |
-
# Define the triplet loss function
|
92 |
-
criterion = nn.TripletMarginLoss(margin=HYPERPARAMS['margin']).to(device)
|
93 |
-
|
94 |
-
# Define the optimizer
|
95 |
-
optimizer = optim.Adam(siamese_ppi_net.parameters(), lr=HYPERPARAMS['learning_rate'])
|
96 |
-
|
97 |
-
# Load dataset
|
98 |
-
train_dataset = load_from_disk('/home/tc415/muPPIt/dataset/train_mut')
|
99 |
-
val_dataset = load_from_disk('/home/tc415/muPPIt/dataset/val_mut')
|
100 |
-
test_dataset = load_from_disk('/home/tc415/muPPIt/dataset/test_mut')
|
101 |
-
|
102 |
-
# Training loop
|
103 |
-
for epoch in range(HYPERPARAMS['num_epochs']):
|
104 |
-
# Training
|
105 |
-
siamese_ppi_net.train()
|
106 |
-
train_loss = 0.0
|
107 |
-
# for target_tokens, binder_tokens, decoy_tokens in train_dataloader:
|
108 |
-
for batch in train_dataset:
|
109 |
-
# pdb.set_trace()
|
110 |
-
start = time.time()
|
111 |
-
target_tokens = {'input_ids': torch.tensor(batch['anchor_input_ids']).to(device),
|
112 |
-
'attention_mask': torch.tensor(batch['anchor_attention_mask']).to(device)}
|
113 |
-
binder_tokens = {'input_ids': torch.tensor(batch['positive_input_ids']).to(device),
|
114 |
-
'attention_mask': torch.tensor(batch['positive_attention_mask']).to(device)}
|
115 |
-
decoy_tokens = {'input_ids': torch.tensor(batch['negative_input_ids']).to(device),
|
116 |
-
'attention_mask': torch.tensor(batch['negative_attention_mask']).to(device)}
|
117 |
-
|
118 |
-
|
119 |
-
# pdb.set_trace()
|
120 |
-
# Forward pass
|
121 |
-
target_embedding, binder_embedding, decoy_embedding = siamese_ppi_net(target_tokens, binder_tokens, decoy_tokens)
|
122 |
-
|
123 |
-
# Compute the triplet loss
|
124 |
-
loss = criterion(target_embedding, binder_embedding, decoy_embedding)
|
125 |
-
|
126 |
-
# Backward pass and optimization
|
127 |
-
optimizer.zero_grad()
|
128 |
-
loss.backward()
|
129 |
-
optimizer.step()
|
130 |
-
train_loss += loss.item()
|
131 |
-
|
132 |
-
print(f"loss = {loss.item()}, time = {time.time()-start}s")
|
133 |
-
|
134 |
-
train_loss /= len(train_dataset)
|
135 |
-
|
136 |
-
# Validation
|
137 |
-
siamese_ppi_net.eval()
|
138 |
-
val_loss = 0.0
|
139 |
-
with torch.no_grad():
|
140 |
-
for batch in val_dataset:
|
141 |
-
target_tokens = {'input_ids': torch.tensor(batch['anchor_input_ids']).to(device),
|
142 |
-
'attention_mask': torch.tensor(batch['anchor_attention_mask']).to(device)}
|
143 |
-
binder_tokens = {'input_ids': torch.tensor(batch['positive_input_ids']).to(device),
|
144 |
-
'attention_mask': torch.tensor(batch['positive_attention_mask']).to(device)}
|
145 |
-
decoy_tokens = {'input_ids': torch.tensor(batch['negative_input_ids']).to(device),
|
146 |
-
'attention_mask': torch.tensor(batch['negative_attention_mask']).to(device)}
|
147 |
-
target_embedding, binder_embedding, decoy_embedding = siamese_ppi_net(target_tokens, binder_tokens, decoy_tokens)
|
148 |
-
loss = criterion(target_embedding, binder_embedding, decoy_embedding)
|
149 |
-
val_loss += loss.item()
|
150 |
-
val_loss /= len(val_dataset)
|
151 |
-
|
152 |
-
print(f"Epoch [{epoch+1}/{HYPERPARAMS['num_epochs']}], Train Loss: {train_loss:.4f}, Val Loss: {val_loss:.4f}")
|
153 |
-
|
154 |
-
# Testing
|
155 |
-
siamese_ppi_net.eval()
|
156 |
-
test_loss = 0.0
|
157 |
-
with torch.no_grad():
|
158 |
-
for batch in test_dataset:
|
159 |
-
target_tokens = {'input_ids': torch.tensor(batch['anchor_input_ids']).to(device),
|
160 |
-
'attention_mask': torch.tensor(batch['anchor_attention_mask']).to(device)}
|
161 |
-
binder_tokens = {'input_ids': torch.tensor(batch['positive_input_ids']).to(device),
|
162 |
-
'attention_mask': torch.tensor(batch['positive_attention_mask']).to(device)}
|
163 |
-
decoy_tokens = {'input_ids': torch.tensor(batch['negative_input_ids']).to(device),
|
164 |
-
'attention_mask': torch.tensor(batch['negative_attention_mask']).to(device)}
|
165 |
-
target_embedding, binder_embedding, decoy_embedding = siamese_ppi_net(target_tokens, binder_tokens, decoy_tokens)
|
166 |
-
loss = criterion(target_embedding, binder_embedding, decoy_embedding)
|
167 |
-
test_loss += loss.item()
|
168 |
-
test_loss /= len(test_dataset)
|
169 |
-
|
170 |
-
print(f"Test Loss: {test_loss:.4f}")
|
171 |
-
|
172 |
-
# Save the trained model
|
173 |
-
torch.save(siamese_ppi_net.state_dict(), "siamese_ppi_model.pth")
|
174 |
-
|
175 |
-
# # Example: Scoring for candidate binders
|
176 |
-
# target_seq = "MKTVRQERLKSIVRILERSKEPVSGAQLAEELSVSRQVIVQDIAYLRSLGYNIVATPRGYVLAGG"
|
177 |
-
# candidate_binders = [
|
178 |
-
# "KTVNELEKVIKKQGKRAKLIIAIIMIIIIIIVV",
|
179 |
-
# "ATVRELEKQIKKQRKRAKLIIAIVMIFIIVVVV",
|
180 |
-
# "KTVNELEKQIKKQGKRAKLIIAIVMIIIIVVVV"
|
181 |
-
# ]
|
182 |
-
# decoy_seq = "MHIKPLLSRLAQAAANASATPPPPPPPPPGPAVAEEPLHRPTNPGASSGCHKQPLKQSDCPKRPR"
|
183 |
-
|
184 |
-
# scores = generate_scores(siamese_ppi_net, tokenizer, target_seq, candidate_binders, decoy_seq)
|
185 |
-
# print("Candidate Binder Scores:")
|
186 |
-
# for binder, score in zip(candidate_binders, scores):
|
187 |
-
# print(f"Binder: {binder}, Score: {score:.4f}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|