import pdb import torch import torch.nn.functional as F import pytorch_lightning as pl import time from .bindevaluator_modules import * class BindEvaluator(pl.LightningModule): def __init__(self, n_layers, d_model, d_hidden, n_head, d_k, d_v, d_inner, dropout=0.2, learning_rate=0.00001, max_epochs=15, kl_weight=1): super(BindEvaluator, self).__init__() self.esm_model = EsmModel.from_pretrained("facebook/esm2_t33_650M_UR50D") # freeze all the esm_model parameters for param in self.esm_model.parameters(): param.requires_grad = False self.repeated_module = RepeatedModule3(n_layers, d_model, d_hidden, n_head, d_k, d_v, d_inner, dropout=dropout) self.final_attention_layer = MultiHeadAttentionSequence(n_head, d_model, d_k, d_v, dropout=dropout) self.final_ffn = FFN(d_model, d_inner, dropout=dropout) self.output_projection_prot = nn.Linear(d_model, 1) self.learning_rate = learning_rate self.max_epochs = max_epochs self.kl_weight = kl_weight self.classification_threshold = nn.Parameter(torch.tensor(0.5)) # Initial threshold self.historical_memory = 0.9 self.class_weights = torch.tensor([3.000471363174231, 0.5999811490272925]) # binding_site weights, non-bidning site weights def forward(self, binder_tokens, target_tokens): peptide_sequence = self.esm_model(**binder_tokens).last_hidden_state protein_sequence = self.esm_model(**target_tokens).last_hidden_state prot_enc, sequence_enc, sequence_attention_list, prot_attention_list, \ seq_prot_attention_list, seq_prot_attention_list = self.repeated_module(peptide_sequence, protein_sequence) prot_enc, final_prot_seq_attention = self.final_attention_layer(prot_enc, sequence_enc, sequence_enc) prot_enc = self.final_ffn(prot_enc) prot_enc = self.output_projection_prot(prot_enc) return prot_enc def get_probs(self, xt, target_sequence): ''' Inputs: - xt: Shape (bsz*seq_len*vocab_size, seq_len) - target_sequence: Shape (bsz*seq_len*vocab_size, tgt_len) ''' binder_attention_mask = torch.ones_like(xt) target_attention_mask = torch.ones_like(target_sequence) binder_attention_mask[:, 0] = binder_attention_mask[:, -1] = 0 target_attention_mask[:, 0] = target_attention_mask[:, -1] = 0 binder_tokens = {'input_ids': xt, 'attention_mask': binder_attention_mask.to(xt.device)} target_tokens = {'input_ids': target_sequence, 'attention_mask': target_attention_mask.to(target_sequence.device)} start = time.time() logits = self.forward(binder_tokens, target_tokens).squeeze(-1) # print(f"Time: {time.time() - start} seconds") logits[:, 0] = logits[:, -1] = -100 # float('-inf') probs = F.softmax(logits, dim=-1) return probs # shape (bsz*seq_len*vocab_size, tgt_len)