from torch import nn from .modules import * import pdb class ConvLayer(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, padding, dilation): super(ConvLayer, self).__init__() self.conv = nn.Conv1d(in_channels, out_channels, kernel_size, padding=padding, dilation=dilation) self.relu = nn.ReLU() def forward(self, x): out = self.conv(x) out = self.relu(out) return out class DilatedCNN(nn.Module): def __init__(self, d_model, d_hidden): super(DilatedCNN, self).__init__() self.first_ = nn.ModuleList() self.second_ = nn.ModuleList() self.third_ = nn.ModuleList() dilation_tuple = (1, 2, 3) dim_in_tuple = (d_model, d_hidden, d_hidden) dim_out_tuple = (d_hidden, d_hidden, d_hidden) for i, dilation_rate in enumerate(dilation_tuple): self.first_.append(ConvLayer(dim_in_tuple[i], dim_out_tuple[i], kernel_size=3, padding=dilation_rate, dilation=dilation_rate)) for i, dilation_rate in enumerate(dilation_tuple): self.second_.append(ConvLayer(dim_in_tuple[i], dim_out_tuple[i], kernel_size=5, padding=2*dilation_rate, dilation=dilation_rate)) for i, dilation_rate in enumerate(dilation_tuple): self.third_.append(ConvLayer(dim_in_tuple[i], dim_out_tuple[i], kernel_size=7, padding=3*dilation_rate, dilation=dilation_rate)) def forward(self, protein_seq_enc): # pdb.set_trace() protein_seq_enc = protein_seq_enc.transpose(1, 2) # protein_seq_enc's shape: B*L*d_model -> B*d_model*L first_embedding = protein_seq_enc second_embedding = protein_seq_enc third_embedding = protein_seq_enc for i in range(len(self.first_)): first_embedding = self.first_[i](first_embedding) for i in range(len(self.second_)): second_embedding = self.second_[i](second_embedding) for i in range(len(self.third_)): third_embedding = self.third_[i](third_embedding) # pdb.set_trace() protein_seq_enc = first_embedding + second_embedding + third_embedding return protein_seq_enc.transpose(1, 2) class ReciprocalLayerwithCNN(nn.Module): def __init__(self, d_model, d_inner, d_hidden, n_head, d_k, d_v): super().__init__() self.cnn = DilatedCNN(d_model, d_hidden) self.sequence_attention_layer = MultiHeadAttentionSequence(n_head, d_hidden, d_k, d_v) self.protein_attention_layer = MultiHeadAttentionSequence(n_head, d_hidden, d_k, d_v) self.reciprocal_attention_layer = MultiHeadAttentionReciprocal(n_head, d_hidden, d_k, d_v) self.ffn_seq = FFN(d_hidden, d_inner) self.ffn_protein = FFN(d_hidden, d_inner) def forward(self, sequence_enc, protein_seq_enc): # pdb.set_trace() # protein_seq_enc.shape = B * L * d_model protein_seq_enc = self.cnn(protein_seq_enc) prot_enc, prot_attention = self.protein_attention_layer(protein_seq_enc, protein_seq_enc, protein_seq_enc) seq_enc, sequence_attention = self.sequence_attention_layer(sequence_enc, sequence_enc, sequence_enc) prot_enc, seq_enc, prot_seq_attention, seq_prot_attention = self.reciprocal_attention_layer(prot_enc, seq_enc, seq_enc, prot_enc) prot_enc = self.ffn_protein(prot_enc) seq_enc = self.ffn_seq(seq_enc) return prot_enc, seq_enc, prot_attention, sequence_attention, prot_seq_attention, seq_prot_attention class ReciprocalLayer(nn.Module): def __init__(self, d_model, d_inner, n_head, d_k, d_v): super().__init__() self.sequence_attention_layer = MultiHeadAttentionSequence(n_head, d_model, d_k, d_v) self.protein_attention_layer = MultiHeadAttentionSequence(n_head, d_model, d_k, d_v) self.reciprocal_attention_layer = MultiHeadAttentionReciprocal(n_head, d_model, d_k, d_v) self.ffn_seq = FFN(d_model, d_inner) self.ffn_protein = FFN(d_model, d_inner) def forward(self, sequence_enc, protein_seq_enc): prot_enc, prot_attention = self.protein_attention_layer(protein_seq_enc, protein_seq_enc, protein_seq_enc) seq_enc, sequence_attention = self.sequence_attention_layer(sequence_enc, sequence_enc, sequence_enc) prot_enc, seq_enc, prot_seq_attention, seq_prot_attention = self.reciprocal_attention_layer(prot_enc, seq_enc, seq_enc, prot_enc) prot_enc = self.ffn_protein(prot_enc) seq_enc = self.ffn_seq(seq_enc) return prot_enc, seq_enc, prot_attention, sequence_attention, prot_seq_attention, seq_prot_attention