from torch import nn import numpy as np import torch import torch.nn.functional as F def to_var(x): if torch.cuda.is_available(): x = x.cuda() return x class MultiHeadAttentionSequence(nn.Module): def __init__(self, n_head, d_model, d_k, d_v, dropout=0.1): super().__init__() self.n_head = n_head self.d_model = d_model self.d_k = d_k self.d_v = d_v self.W_Q = nn.Linear(d_model, n_head*d_k) self.W_K = nn.Linear(d_model, n_head*d_k) self.W_V = nn.Linear(d_model, n_head*d_v) self.W_O = nn.Linear(n_head*d_v, d_model) self.layer_norm = nn.LayerNorm(d_model) self.dropout = nn.Dropout(dropout) def forward(self, q, k, v): batch, len_q, _ = q.size() batch, len_k, _ = k.size() batch, len_v, _ = v.size() Q = self.W_Q(q).view([batch, len_q, self.n_head, self.d_k]) K = self.W_K(k).view([batch, len_k, self.n_head, self.d_k]) V = self.W_V(v).view([batch, len_v, self.n_head, self.d_v]) Q = Q.transpose(1, 2) K = K.transpose(1, 2).transpose(2, 3) V = V.transpose(1, 2) attention = torch.matmul(Q, K) attention = attention / np.sqrt(self.d_k) attention = F.softmax(attention, dim=-1) output = torch.matmul(attention, V) output = output.transpose(1, 2).reshape([batch, len_q, self.d_v*self.n_head]) output = self.W_O(output) output = self.dropout(output) output = self.layer_norm(output + q) return output, attention class MultiHeadAttentionReciprocal(nn.Module): def __init__(self, n_head, d_model, d_k, d_v, dropout=0.1): super().__init__() self.n_head = n_head self.d_model = d_model self.d_k = d_k self.d_v = d_v self.W_Q = nn.Linear(d_model, n_head*d_k) self.W_K = nn.Linear(d_model, n_head*d_k) self.W_V = nn.Linear(d_model, n_head*d_v) self.W_O = nn.Linear(n_head*d_v, d_model) self.W_V_2 = nn.Linear(d_model, n_head*d_v) self.W_O_2 = nn.Linear(n_head*d_v, d_model) self.layer_norm = nn.LayerNorm(d_model) self.dropout = nn.Dropout(dropout) self.layer_norm_2 = nn.LayerNorm(d_model) self.dropout_2 = nn.Dropout(dropout) def forward(self, q, k, v, v_2): batch, len_q, _ = q.size() batch, len_k, _ = k.size() batch, len_v, _ = v.size() batch, len_v_2, _ = v_2.size() Q = self.W_Q(q).view([batch, len_q, self.n_head, self.d_k]) K = self.W_K(k).view([batch, len_k, self.n_head, self.d_k]) V = self.W_V(v).view([batch, len_v, self.n_head, self.d_v]) V_2 = self.W_V_2(v_2).view([batch, len_v_2, self.n_head, self.d_v]) Q = Q.transpose(1, 2) K = K.transpose(1, 2).transpose(2, 3) V = V.transpose(1, 2) V_2 = V_2.transpose(1,2) attention = torch.matmul(Q, K) attention = attention /np.sqrt(self.d_k) attention_2 = attention.transpose(-2, -1) attention = F.softmax(attention, dim=-1) attention_2 = F.softmax(attention_2, dim=-1) output = torch.matmul(attention, V) output_2 = torch.matmul(attention_2, V_2) output = output.transpose(1, 2).reshape([batch, len_q, self.d_v*self.n_head]) output_2 = output_2.transpose(1, 2).reshape([batch, len_k, self.d_v*self.n_head]) output = self.W_O(output) output_2 = self.W_O_2(output_2) output = self.dropout(output) output = self.layer_norm(output + q) output_2 = self.dropout(output_2) output_2 = self.layer_norm(output_2 + k) return output, output_2, attention, attention_2 class FFN(nn.Module): def __init__(self, d_in, d_hid, dropout=0.1): super().__init__() self.layer_1 = nn.Conv1d(d_in, d_hid,1) self.layer_2 = nn.Conv1d(d_hid, d_in,1) self.relu = nn.ReLU() self.layer_norm = nn.LayerNorm(d_in) self.dropout = nn.Dropout(dropout) def forward(self, x): residual = x output = self.layer_1(x.transpose(1, 2)) output = self.relu(output) output = self.layer_2(output) output = self.dropout(output) output = self.layer_norm(output.transpose(1, 2)+residual) return output