Re-add tokenizer.json with LFS
Browse files- README.md +111 -2
- lora_model/adapter_config.json β adapter_config.json +0 -0
- lora_model/adapter_model.safetensors β adapter_model.safetensors +0 -0
- lora_model/README.md +0 -202
- lora_model/special_tokens_map.json β special_tokens_map.json +0 -0
- lora_model/tokenizer.json β tokenizer.json +0 -0
- lora_model/tokenizer_config.json β tokenizer_config.json +0 -0
README.md
CHANGED
|
@@ -5,5 +5,114 @@ datasets:
|
|
| 5 |
language:
|
| 6 |
- en
|
| 7 |
base_model:
|
| 8 |
-
-
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
language:
|
| 6 |
- en
|
| 7 |
base_model:
|
| 8 |
+
- unsloth/Llama-3.2-3B-Instruct
|
| 9 |
+
new_version: meta-llama/Llama-3.2-3B-Instruct
|
| 10 |
+
pipeline_tag: text2text-generation
|
| 11 |
+
tags:
|
| 12 |
+
- Fortran
|
| 13 |
+
- Rust
|
| 14 |
+
- FortranToRust
|
| 15 |
+
---
|
| 16 |
+
# Model Card for Model ID
|
| 17 |
+
|
| 18 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
| 19 |
+
|
| 20 |
+
This modelcard aims to be a base template for new models. It has been generated using [unsloth/Llama-3.2-3B-Instruct](https://huggingface.co/unsloth/Llama-3.2-3B-Instruct).
|
| 21 |
+
|
| 22 |
+
## Model Details
|
| 23 |
+
|
| 24 |
+
### Model Description
|
| 25 |
+
|
| 26 |
+
CodeConvLLM is a language model specifically designed to translate OCaml and Fortran code into C# and Rust. It integrates seamlessly with Visual Studio Code through a plugin and ensures industry-standard translations by benchmarking outputs against best practices in software engineering.
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
- **Developed by:** [Caslow Chien](https://huggingface.co/Caslow) and [Chandrahas Aroori](https://huggingface.co/charoori)
|
| 30 |
+
- **License:** MIT
|
| 31 |
+
- **Finetuned from model:** [unsloth/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct)
|
| 32 |
+
|
| 33 |
+
### Model Sources
|
| 34 |
+
|
| 35 |
+
- **Repository:** [GitHub Repo](https://github.com/CodeTranslatorLLM/LinguistLLM)
|
| 36 |
+
|
| 37 |
+
## Uses
|
| 38 |
+
|
| 39 |
+
### Direct Use
|
| 40 |
+
The model can be used directly for code translation tasks. Users can input OCaml or Fortran code into the Gradio dashboard or via the API and receive C# or Rust code as output. It is particularly suitable for developers needing efficient, accurate language conversion in software migration or integration projects.
|
| 41 |
+
|
| 42 |
+
### Downstream Use [optional]
|
| 43 |
+
Developers can integrate this model into larger IDE ecosystems, CI/CD pipelines, or automated code-refactoring systems for multi-language development projects.
|
| 44 |
+
|
| 45 |
+
### Out-of-Scope Use
|
| 46 |
+
The model should not be used for:
|
| 47 |
+
+ Translating non-code text.
|
| 48 |
+
+ Translating between languages it is not trained for (e.g., Python to Java).
|
| 49 |
+
+ Malicious purposes, such as creating obfuscated or harmful code.
|
| 50 |
+
+
|
| 51 |
+
## Bias, Risks, and Limitations
|
| 52 |
+
While the model achieves high accuracy in most cases, it may introduce errors in certain edge cases or highly domain-specific code. Users must verify and test generated outputs thoroughly before deployment.
|
| 53 |
+
|
| 54 |
+
### Recommendations
|
| 55 |
+
+ Validation: Benchmark the output using standard tools and manual review.
|
| 56 |
+
+ Testing: Integrate automated testing during translation workflows to catch potential bugs or inaccuracies.
|
| 57 |
+
|
| 58 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 59 |
+
|
| 60 |
+
## How to Get Started with the Model
|
| 61 |
+
|
| 62 |
+
Please visit the [GitHub Repo](https://github.com/CodeTranslatorLLM/LinguistLLM) for a detailed guide.
|
| 63 |
+
|
| 64 |
+
**Quick Guide**
|
| 65 |
+
1. Load the model
|
| 66 |
+
```python
|
| 67 |
+
from unsloth import FastLanguageModel
|
| 68 |
+
from transformers import TextStreamer
|
| 69 |
+
|
| 70 |
+
max_seq_length = 2048
|
| 71 |
+
dtype = None
|
| 72 |
+
load_in_4bit = True
|
| 73 |
+
|
| 74 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
| 75 |
+
model_name = "lora_model", # OUR MODEL YOU USED FOR TRAINING, put it under the same folder
|
| 76 |
+
max_seq_length = max_seq_length,
|
| 77 |
+
dtype = dtype,
|
| 78 |
+
load_in_4bit = load_in_4bit,
|
| 79 |
+
)
|
| 80 |
+
FastLanguageModel.for_inference(model)
|
| 81 |
+
```
|
| 82 |
+
|
| 83 |
+
2. Get your input
|
| 84 |
+
```python
|
| 85 |
+
USER_INPUT_CODE = # YOUR FORTRAN CODE
|
| 86 |
+
USER_INPUT_EXPLANATION = # YOUR FORTRAN CODE EXPLANATION
|
| 87 |
+
messages = [
|
| 88 |
+
{
|
| 89 |
+
"role": "user",
|
| 90 |
+
"content": str("[Fortran Code]") + str(USER_INPUT_CODE) + str("[Fortran Code Explain]" )+ str(USER_INPUT_EXPLANATION)
|
| 91 |
+
},
|
| 92 |
+
]
|
| 93 |
+
inputs = tokenizer.apply_chat_template(
|
| 94 |
+
messages,
|
| 95 |
+
tokenize = True,
|
| 96 |
+
add_generation_prompt = True, # Must add for generation
|
| 97 |
+
return_tensors = "pt",
|
| 98 |
+
).to("cuda")
|
| 99 |
+
```
|
| 100 |
+
|
| 101 |
+
3. Run the model
|
| 102 |
+
```python
|
| 103 |
+
text_streamer = TextStreamer(tokenizer, skip_prompt = True)
|
| 104 |
+
_ = model.generate(input_ids = inputs, streamer = text_streamer, max_new_tokens = 2000,
|
| 105 |
+
use_cache = True, temperature = 1.5, min_p = 0.1)
|
| 106 |
+
```
|
| 107 |
+
|
| 108 |
+
## Training Details
|
| 109 |
+
|
| 110 |
+
Please visit the [GitHub Repo](https://github.com/CodeTranslatorLLM/LinguistLLM) for a detailed guide.
|
| 111 |
+
|
| 112 |
+
### Training Data
|
| 113 |
+
|
| 114 |
+
Please visit the [GitHub Repo](https://github.com/CodeTranslatorLLM/LinguistLLM) for a detailed guide.
|
| 115 |
+
|
| 116 |
+
### Training Procedure
|
| 117 |
+
|
| 118 |
+
Please visit the [GitHub Repo](https://github.com/CodeTranslatorLLM/LinguistLLM) for a detailed guide.
|
lora_model/adapter_config.json β adapter_config.json
RENAMED
|
File without changes
|
lora_model/adapter_model.safetensors β adapter_model.safetensors
RENAMED
|
File without changes
|
lora_model/README.md
DELETED
|
@@ -1,202 +0,0 @@
|
|
| 1 |
-
---
|
| 2 |
-
base_model: unsloth/llama-3.2-3b-instruct-bnb-4bit
|
| 3 |
-
library_name: peft
|
| 4 |
-
---
|
| 5 |
-
|
| 6 |
-
# Model Card for Model ID
|
| 7 |
-
|
| 8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
## Model Details
|
| 13 |
-
|
| 14 |
-
### Model Description
|
| 15 |
-
|
| 16 |
-
<!-- Provide a longer summary of what this model is. -->
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
- **Developed by:** [More Information Needed]
|
| 21 |
-
- **Funded by [optional]:** [More Information Needed]
|
| 22 |
-
- **Shared by [optional]:** [More Information Needed]
|
| 23 |
-
- **Model type:** [More Information Needed]
|
| 24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
-
- **License:** [More Information Needed]
|
| 26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
-
|
| 28 |
-
### Model Sources [optional]
|
| 29 |
-
|
| 30 |
-
<!-- Provide the basic links for the model. -->
|
| 31 |
-
|
| 32 |
-
- **Repository:** [More Information Needed]
|
| 33 |
-
- **Paper [optional]:** [More Information Needed]
|
| 34 |
-
- **Demo [optional]:** [More Information Needed]
|
| 35 |
-
|
| 36 |
-
## Uses
|
| 37 |
-
|
| 38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 39 |
-
|
| 40 |
-
### Direct Use
|
| 41 |
-
|
| 42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 43 |
-
|
| 44 |
-
[More Information Needed]
|
| 45 |
-
|
| 46 |
-
### Downstream Use [optional]
|
| 47 |
-
|
| 48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 49 |
-
|
| 50 |
-
[More Information Needed]
|
| 51 |
-
|
| 52 |
-
### Out-of-Scope Use
|
| 53 |
-
|
| 54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 55 |
-
|
| 56 |
-
[More Information Needed]
|
| 57 |
-
|
| 58 |
-
## Bias, Risks, and Limitations
|
| 59 |
-
|
| 60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 61 |
-
|
| 62 |
-
[More Information Needed]
|
| 63 |
-
|
| 64 |
-
### Recommendations
|
| 65 |
-
|
| 66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 67 |
-
|
| 68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 69 |
-
|
| 70 |
-
## How to Get Started with the Model
|
| 71 |
-
|
| 72 |
-
Use the code below to get started with the model.
|
| 73 |
-
|
| 74 |
-
[More Information Needed]
|
| 75 |
-
|
| 76 |
-
## Training Details
|
| 77 |
-
|
| 78 |
-
### Training Data
|
| 79 |
-
|
| 80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 81 |
-
|
| 82 |
-
[More Information Needed]
|
| 83 |
-
|
| 84 |
-
### Training Procedure
|
| 85 |
-
|
| 86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 87 |
-
|
| 88 |
-
#### Preprocessing [optional]
|
| 89 |
-
|
| 90 |
-
[More Information Needed]
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
#### Training Hyperparameters
|
| 94 |
-
|
| 95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 96 |
-
|
| 97 |
-
#### Speeds, Sizes, Times [optional]
|
| 98 |
-
|
| 99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
-
|
| 101 |
-
[More Information Needed]
|
| 102 |
-
|
| 103 |
-
## Evaluation
|
| 104 |
-
|
| 105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
-
|
| 107 |
-
### Testing Data, Factors & Metrics
|
| 108 |
-
|
| 109 |
-
#### Testing Data
|
| 110 |
-
|
| 111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
-
|
| 113 |
-
[More Information Needed]
|
| 114 |
-
|
| 115 |
-
#### Factors
|
| 116 |
-
|
| 117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
-
|
| 119 |
-
[More Information Needed]
|
| 120 |
-
|
| 121 |
-
#### Metrics
|
| 122 |
-
|
| 123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
-
|
| 125 |
-
[More Information Needed]
|
| 126 |
-
|
| 127 |
-
### Results
|
| 128 |
-
|
| 129 |
-
[More Information Needed]
|
| 130 |
-
|
| 131 |
-
#### Summary
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
## Model Examination [optional]
|
| 136 |
-
|
| 137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
-
|
| 139 |
-
[More Information Needed]
|
| 140 |
-
|
| 141 |
-
## Environmental Impact
|
| 142 |
-
|
| 143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
-
|
| 145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
-
|
| 147 |
-
- **Hardware Type:** [More Information Needed]
|
| 148 |
-
- **Hours used:** [More Information Needed]
|
| 149 |
-
- **Cloud Provider:** [More Information Needed]
|
| 150 |
-
- **Compute Region:** [More Information Needed]
|
| 151 |
-
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
-
|
| 153 |
-
## Technical Specifications [optional]
|
| 154 |
-
|
| 155 |
-
### Model Architecture and Objective
|
| 156 |
-
|
| 157 |
-
[More Information Needed]
|
| 158 |
-
|
| 159 |
-
### Compute Infrastructure
|
| 160 |
-
|
| 161 |
-
[More Information Needed]
|
| 162 |
-
|
| 163 |
-
#### Hardware
|
| 164 |
-
|
| 165 |
-
[More Information Needed]
|
| 166 |
-
|
| 167 |
-
#### Software
|
| 168 |
-
|
| 169 |
-
[More Information Needed]
|
| 170 |
-
|
| 171 |
-
## Citation [optional]
|
| 172 |
-
|
| 173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
-
|
| 175 |
-
**BibTeX:**
|
| 176 |
-
|
| 177 |
-
[More Information Needed]
|
| 178 |
-
|
| 179 |
-
**APA:**
|
| 180 |
-
|
| 181 |
-
[More Information Needed]
|
| 182 |
-
|
| 183 |
-
## Glossary [optional]
|
| 184 |
-
|
| 185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
-
|
| 187 |
-
[More Information Needed]
|
| 188 |
-
|
| 189 |
-
## More Information [optional]
|
| 190 |
-
|
| 191 |
-
[More Information Needed]
|
| 192 |
-
|
| 193 |
-
## Model Card Authors [optional]
|
| 194 |
-
|
| 195 |
-
[More Information Needed]
|
| 196 |
-
|
| 197 |
-
## Model Card Contact
|
| 198 |
-
|
| 199 |
-
[More Information Needed]
|
| 200 |
-
### Framework versions
|
| 201 |
-
|
| 202 |
-
- PEFT 0.13.2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lora_model/special_tokens_map.json β special_tokens_map.json
RENAMED
|
File without changes
|
lora_model/tokenizer.json β tokenizer.json
RENAMED
|
File without changes
|
lora_model/tokenizer_config.json β tokenizer_config.json
RENAMED
|
File without changes
|