File size: 2,665 Bytes
38f7d12 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
---
base_model: NousResearch/Llama-2-7b-hf
tags:
- generated_from_trainer
model-index:
- name: out
results: []
---
```yaml
base_model: NousResearch/Llama-2-7b-hf
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer
is_llama_derived_model: true
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: CognitiveLab/FS_transcribe_summary_prompt
type: completion
dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: ./out
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
adapter:
lora_model_dir:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear:
lora_fan_in_fan_out:
wandb_project: fireship-fft
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 4
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
flash_attn_cross_entropy: false
flash_attn_rms_norm: true
flash_attn_fuse_qkv: false
flash_attn_fuse_mlp: true
warmup_steps: 100
evals_per_epoch: 4
eval_table_size:
saves_per_epoch: 2
debug:
deepspeed: #deepspeed_configs/zero2.json # multi-gpu only
weight_decay: 0.1
fsdp:
fsdp_config:
special_tokens:
```
</details><br>
# out
This model is a fine-tuned version of [NousResearch/Llama-2-7b-hf](https://huggingface.co/NousResearch/Llama-2-7b-hf) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8444
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.1256 | 0.06 | 1 | 2.1641 |
| 2.1049 | 0.25 | 4 | 2.1254 |
| 1.9826 | 0.49 | 8 | 1.9868 |
| 1.8545 | 0.74 | 12 | 1.8779 |
| 1.8597 | 0.98 | 16 | 1.8444 |
### Framework versions
- Transformers 4.36.2
- Pytorch 2.0.1+cu118
- Datasets 2.16.1
- Tokenizers 0.15.0
|