File size: 3,369 Bytes
a48db75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa93c34
 
a48db75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
---
license: other
base_model: "stabilityai/stable-diffusion-3.5-medium"
tags:
  - sd3
  - sd3-diffusers
  - text-to-image
  - image-to-image
  - diffusers
  - simpletuner
  - not-for-all-audiences
  - lora
  - controlnet
  - template:sd-lora
  - standard
pipeline_tag: text-to-image
inference: true
widget:
- text: 'A photo-realistic image of a cat'
  parameters:
    negative_prompt: 'ugly, cropped, blurry, low-quality, mediocre average'
  output:
    url: ./assets/image_0_0.png
---

# sd3-controlnet-lora-test

This is a ControlNet PEFT LoRA derived from [stabilityai/stable-diffusion-3.5-medium](https://huggingface.co/stabilityai/stable-diffusion-3.5-medium).

The main validation prompt used during training was:
```
A photo-realistic image of a cat
```


## Validation settings
- CFG: `4.0`
- CFG Rescale: `0.0`
- Steps: `16`
- Sampler: `FlowMatchEulerDiscreteScheduler`
- Seed: `42`
- Resolution: `1024x1024`
- Skip-layer guidance: 

Note: The validation settings are not necessarily the same as the [training settings](#training-settings).

You can find some example images in the following gallery:


<Gallery />

The text encoder **was not** trained.
You may reuse the base model text encoder for inference.


## Training settings

- Training epochs: 17
- Training steps: 500
- Learning rate: 0.0001
  - Learning rate schedule: constant
  - Warmup steps: 500
- Max grad value: 2.0
- Effective batch size: 1
  - Micro-batch size: 1
  - Gradient accumulation steps: 1
  - Number of GPUs: 1
- Gradient checkpointing: True
- Prediction type: flow_matching (extra parameters=['shift=3.0'])
- Optimizer: adamw_bf16
- Trainable parameter precision: Pure BF16
- Base model precision: `int8-quanto`
- Caption dropout probability: 0.0%


- LoRA Rank: 64
- LoRA Alpha: 64.0
- LoRA Dropout: 0.1
- LoRA initialisation style: default
    

## Datasets

### antelope-data-256
- Repeats: 0
- Total number of images: 29
- Total number of aspect buckets: 1
- Resolution: 0.065536 megapixels
- Cropped: True
- Crop style: center
- Crop aspect: square
- Used for regularisation data: No


## Inference


```python
import torch
from diffusers import DiffusionPipeline

model_id = 'stabilityai/stable-diffusion-3.5-medium'
adapter_id = 'bghira/sd3-controlnet-lora-test'
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16
pipeline.load_lora_weights(adapter_id)

prompt = "A photo-realistic image of a cat"
negative_prompt = 'ugly, cropped, blurry, low-quality, mediocre average'

## Optional: quantise the model to save on vram.
## Note: The model was quantised during training, and so it is recommended to do the same during inference time.
from optimum.quanto import quantize, freeze, qint8
quantize(pipeline.transformer, weights=qint8)
freeze(pipeline.transformer)
    
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level
model_output = pipeline(
    prompt=prompt,
    negative_prompt=negative_prompt,
    num_inference_steps=16,
    generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42),
    width=1024,
    height=1024,
    guidance_scale=4.0,
).images[0]

model_output.save("output.png", format="PNG")

```