Update README.md
Browse files
README.md
CHANGED
|
@@ -4,29 +4,40 @@ datasets:
|
|
| 4 |
- DarthReca/crisislandmark
|
| 5 |
language:
|
| 6 |
- en
|
| 7 |
-
library_name:
|
| 8 |
tags:
|
| 9 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
---
|
| 11 |
# CLOSP-RN
|
| 12 |
|
| 13 |
-
|
|
|
|
|
|
|
| 14 |
|
| 15 |
## Model Details
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
<!-- Provide a longer summary of what this model is. -->
|
| 20 |
-
|
| 21 |
|
| 22 |
|
| 23 |
- **Developed by:** Daniele Rege Cambrin
|
| 24 |
-
- **Model type:**
|
| 25 |
-
- **Language(s) (NLP):**
|
| 26 |
-
- **License:**
|
| 27 |
-
- **Finetuned from model
|
| 28 |
-
- **Repository:** [
|
| 29 |
-
- **Paper:** [
|
| 30 |
|
| 31 |
## How to Get Started with the Model
|
| 32 |
|
|
@@ -34,7 +45,16 @@ Use the code below to get started with the model.
|
|
| 34 |
|
| 35 |
[More Information Needed]
|
| 36 |
|
| 37 |
-
## Training Details
|
| 38 |
-
|
| 39 |
-
|
| 40 |
## Citation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
- DarthReca/crisislandmark
|
| 5 |
language:
|
| 6 |
- en
|
| 7 |
+
library_name: transformers
|
| 8 |
tags:
|
| 9 |
+
- remote-sensing
|
| 10 |
+
- text-to-image-retrieval
|
| 11 |
+
- multimodal
|
| 12 |
+
- geospatial
|
| 13 |
+
- SAR
|
| 14 |
+
- multispectral
|
| 15 |
+
- crisis-management
|
| 16 |
+
- earth-observation
|
| 17 |
+
- contrastive-learning
|
| 18 |
+
base_model:
|
| 19 |
+
- sentence-transformers/all-MiniLM-L6-v2
|
| 20 |
+
- torchgeo/resnet50_sentinel2_all_moco
|
| 21 |
+
- torchgeo/resnet50_sentinel1_all_moco
|
| 22 |
---
|
| 23 |
# CLOSP-RN
|
| 24 |
|
| 25 |
+
CLOSP (Contrastive Language Optical SAR Pretraining) is a multimodal architecture designed for text-to-image retrieval.
|
| 26 |
+
It creates a unified embedding space for text, Sentinel-2 (MSI), and Sentinel-1 (SAR) data.
|
| 27 |
+
The CLOSP-RN variant uses a ResNet-50 vision backbone.
|
| 28 |
|
| 29 |
## Model Details
|
| 30 |
+
The model uses three separate encoders: one for text, one for Sentinel-1 (SAR) data, and one for Sentinel-2 (MSI) data.
|
| 31 |
+
During training, it uses a contrastive objective to align the textual embeddings with the corresponding visual embeddings (either SAR or MSI).
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
|
| 34 |
- **Developed by:** Daniele Rege Cambrin
|
| 35 |
+
- **Model type:** CLOSP
|
| 36 |
+
- **Language(s) (NLP):** english
|
| 37 |
+
- **License:** OpenRAIL
|
| 38 |
+
- **Finetuned from model:** [More Information Needed]
|
| 39 |
+
- **Repository:** [GitHub](https://github.com/DarthReca/closp)
|
| 40 |
+
- **Paper:** [ArXiv](https://arxiv.org/abs/2507.10403)
|
| 41 |
|
| 42 |
## How to Get Started with the Model
|
| 43 |
|
|
|
|
| 45 |
|
| 46 |
[More Information Needed]
|
| 47 |
|
|
|
|
|
|
|
|
|
|
| 48 |
## Citation
|
| 49 |
+
|
| 50 |
+
```bibtex
|
| 51 |
+
@misc{cambrin2025texttoremotesensingimageretrievalrgbsources,
|
| 52 |
+
title={Text-to-Remote-Sensing-Image Retrieval beyond RGB Sources},
|
| 53 |
+
author={Daniele Rege Cambrin and Lorenzo Vaiani and Giuseppe Gallipoli and Luca Cagliero and Paolo Garza},
|
| 54 |
+
year={2025},
|
| 55 |
+
eprint={2507.10403},
|
| 56 |
+
archivePrefix={arXiv},
|
| 57 |
+
primaryClass={cs.CV},
|
| 58 |
+
url={https://arxiv.org/abs/2507.10403},
|
| 59 |
+
}
|
| 60 |
+
```
|