Text Generation
Transformers
PyTorch
English
mistral
text-generation-inference
File size: 1,223 Bytes
deb6329
e79848b
 
 
 
deb6329
b638475
 
deb6329
 
b638475
e79848b
deb6329
e79848b
deb6329
e79848b
deb6329
e79848b
deb6329
e79848b
deb6329
e79848b
deb6329
e79848b
 
 
deb6329
e79848b
deb6329
e79848b
 
 
 
 
 
 
 
b638475
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
---
datasets:
- togethercomputer/RedPajama-Data-1T
language:
- en
library_name: transformers
license: apache-2.0
pipeline_tag: text-generation
---

```markdown
## BSL-1.7B

[paper](https://arxiv.org/abs/2410.07064) | [code](https://github.com/microsoft/LMOps/tree/main/data_selection)

**BSL-1.7B** is a 1.7B model with [Mistral](https://arxiv.org/abs/2310.06825) achitecture pre-trained from scratch on the CC split of [Redpajama](https://github.com/togethercomputer/RedPajama-Data).

**It is used as the baseline for [PDS-1.7B](https://huggingface.co/Data-Selection/PDS-1.7B).**

### Evaluation

PDS-selected data improves the performance of language models pre-trained from scratch and saves pre-training comptation. The improvement scales up to large model sizes.

<p align='left'>
    <img src="https://cdn-uploads.huggingface.co/production/uploads/624ac662102fcdff87be51b9/6undIr37d10qD73TDiPDK.png" width="600">
</p>

### Citation

```bibtex
@article{gu2024data,
  title={Data Selection via Optimal Control for Language Models},
  author={Gu, Yuxian and Dong, Li and Wang, Hongning and Hao, Yaru and Dong, Qingxiu and Wei, Furu and Huang, Minlie},
  journal={arXiv preprint arXiv:2410.07064},
  year={2024}
}
```
```