Upload configuration_decicoder.py with huggingface_hub (#2)
Browse files- Upload configuration_decicoder.py with huggingface_hub (2e69d90aa054450cf0c868bf78da310634d1f450)
- configuration_decicoder.py +45 -0
configuration_decicoder.py
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers.models.llama.configuration_llama import LlamaConfig
|
| 2 |
+
from transformers.utils import logging
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
logger = logging.get_logger(__name__)
|
| 6 |
+
|
| 7 |
+
LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class DeciCoderConfig(LlamaConfig):
|
| 11 |
+
r"""
|
| 12 |
+
This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA
|
| 13 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
| 14 |
+
defaults will yield a similar configuration to that of the LLaMA-7B.
|
| 15 |
+
|
| 16 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 17 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
Args:
|
| 21 |
+
naive_attention_prefill (`bool`, *optional*, defaults to False):
|
| 22 |
+
Whether to use naive matmul or scaled dot product attention during prefill.
|
| 23 |
+
naive_attention_decode_batched (`bool`, *optional*, defaults to True):
|
| 24 |
+
Whether to use naive matmul or scaled dot product attention during decode for batch_size > 1.
|
| 25 |
+
naive_attention_decode_single (`bool`, *optional*, defaults to False):
|
| 26 |
+
Whether to use naive matmul or scaled dot product attention during decode for batch_size == 1.
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
```"""
|
| 30 |
+
model_type = "llama"
|
| 31 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
| 32 |
+
|
| 33 |
+
def __init__(
|
| 34 |
+
self,
|
| 35 |
+
naive_attention_prefill: bool = False,
|
| 36 |
+
naive_attention_decode_batched: bool = True,
|
| 37 |
+
naive_attention_decode_single: bool = False,
|
| 38 |
+
**kwargs,
|
| 39 |
+
):
|
| 40 |
+
self.naive_attention_prefill = naive_attention_prefill
|
| 41 |
+
self.naive_attention_decode_batched = naive_attention_decode_batched
|
| 42 |
+
self.naive_attention_decode_single = naive_attention_decode_single
|
| 43 |
+
|
| 44 |
+
super().__init__(**kwargs,)
|
| 45 |
+
|