File size: 14,182 Bytes
3775a95 36c8f46 3775a95 36c8f46 3775a95 36c8f46 3775a95 36c8f46 3775a95 36c8f46 3775a95 36c8f46 3775a95 36c8f46 b726cb8 36c8f46 3775a95 36c8f46 3775a95 c712545 f3ff85f 3775a95 36c8f46 b4e4236 36c8f46 b4e4236 3775a95 36c8f46 c712545 36c8f46 3775a95 b8e56d4 36c8f46 91eebb2 36c8f46 6c31330 36c8f46 6c31330 3775a95 36c8f46 3775a95 36c8f46 f6a7636 36c8f46 3775a95 36c8f46 3775a95 36c8f46 3775a95 36c8f46 3775a95 36c8f46 3775a95 36c8f46 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 |
---
license: mit
library_name: stable-baselines3
tags:
- reinforcement-learning
- sales
- conversation-analysis
- conversion-prediction
- ppo
- turn-by-turn-analysis
language:
- en
pipeline_tag: reinforcement-learning
inference: true
datasets:
- synthetic
metrics:
- name: Conversion Prediction Accuracy
type: accuracy
value: 0.967
- name: Inference Time
type: speed
value: 85
widget:
- text: "user: I'm interested in your product\nassistant: Thank you for your interest. How can I help you today?"
example_title: Early Stage Prospect
- text: "user: What's your pricing?\nassistant: Our plans start at $10/user/month"
example_title: Price Discussion
---
# Sales Conversation Analysis Model - Turn-by-Turn Prediction
[](https://www.python.org/downloads/)
[](https://opensource.org/licenses/MIT)
A reinforcement learning model trained to analyze sales conversations and predict conversion probability evolution turn-by-turn. **Specializes in tracking how each message impacts sales success** using advanced PPO and LLM-powered metrics.
**Paper**: [SalesRLAgent: A Reinforcement Learning Approach for Real-Time Sales Conversion Prediction and Optimization](https://arxiv.org/abs/2503.23303)
**Author**: Nandakishor M
**Published**: arXiv:2503.23303
## π Quick Start with This Model
### Installation
```bash
# Requires Python 3.11 for optimal compatibility
pip install deepmost[gpu] # Recommended for LLM features
```
### Method 1: Direct URL Download (Easiest)
```python
from deepmost import sales
# Automatically download and use this specific model from Hugging Face
agent = sales.Agent(
model_path="https://huggingface.co/DeepMostInnovations/sales-conversion-model-reinf-learning/resolve/main/sales_conversion_model.zip",
llm_model="unsloth/Qwen3-4B-GGUF", # For dynamic metrics
auto_download=True # Downloads and caches the model automatically
)
conversation = [
"Hello, I'm looking for information on your new AI-powered CRM",
"You've come to the right place! Our AI CRM helps increase sales efficiency. What challenges are you facing?",
"We struggle with lead prioritization and follow-up timing",
"Excellent! Our AI automatically analyzes leads and suggests optimal follow-up times. Would you like to see a demo?",
"That sounds interesting. What's the pricing like?"
]
# Get turn-by-turn analysis
results = agent.analyze_conversation_progression(conversation, print_results=True)
```
**Output:**
```
Turn 1 (customer): "Hello, I'm looking for information on your new AI-pow..." -> Probability: 0.1744
Turn 2 (sales_rep): "You've come to the right place! Our AI CRM helps increa..." -> Probability: 0.3292
Turn 3 (customer): "We struggle with lead prioritization and follow-up timing" -> Probability: 0.4156
Turn 4 (sales_rep): "Excellent! Our AI automatically analyzes leads and sugge..." -> Probability: 0.3908
Turn 5 (customer): "That sounds interesting. What's the pricing like?" -> Probability: 0.5234
Final Conversion Probability: 52.34%
Final Status: π‘ Medium
```
> **Note**: When using Method 1 (URL), the model is automatically downloaded and cached locally in `~/.deepmost/models/` for faster subsequent usage.
### Method 2: Clone Repository (For Offline Use)
```bash
git lfs install
git clone https://huggingface.co/DeepMostInnovations/sales-conversion-model-reinf-learning
cd sales-conversion-model-reinf-learning
```
```python
from deepmost import sales
# Use the local model file
agent = sales.Agent(
model_path="./sales_conversion_model.zip", # Local file path
llm_model="unsloth/Qwen3-4B-GGUF"
)
# Same analysis as above
results = agent.analyze_conversation_progression(conversation, print_results=True)
```
## π― Model Architecture & Features
### Technical Details
- **Framework**: Stable Baselines3 (PPO)
- **State Representation**: Multi-modal (embeddings + LLM-derived metrics)
- **Action Space**: Continuous (conversion probability 0-1)
- **Feature Extractor**: Custom Linear layers optimized for conversation analysis
- **Embeddings**: BAAI/bge-m3 (1024-dim) with optional Azure OpenAI support
- **Dynamic Metrics**: LLM-powered customer engagement and sales effectiveness analysis
### Key Capabilities
- **Turn-by-Turn Analysis**: Track probability evolution throughout conversations
- **Real-time Insights**: 85ms inference speed vs 3450ms for GPT-4
- **Dynamic Metrics**: LLM analyzes engagement and effectiveness in real-time
- **Sales Training**: Identify which conversation elements increase conversion
- **A/B Testing**: Compare different sales approaches quantitatively
## π Model Performance
According to the research paper, this model achieves:
- **96.7% accuracy** in conversion prediction
- **34.7% improvement** over LLM-only approaches
- **85ms inference time** vs 3450ms for GPT-4
- **43.2% increase** in conversion rates when used by sales representatives
### Training Data
- 100,000+ synthetic sales conversations generated using large language models
- Multiple customer types and conversation scenarios
- Semantic embeddings capturing conversation meaning and context
- Dynamic metrics for engagement and sales effectiveness
## π‘ Use Cases
### 1. Sales Training & Coaching
```python
# Analyze what makes conversations successful
training_conversation = [
{"speaker": "customer", "message": "I'm comparing different CRM vendors"},
{"speaker": "sales_rep", "message": "Smart approach! What's most important to you?"},
{"speaker": "customer", "message": "Integration with existing tools"},
{"speaker": "sales_rep", "message": "We integrate with 200+ tools. Which do you use?"}
]
results = agent.analyze_conversation_progression(training_conversation)
# Identify turns that increased/decreased probability
for i, result in enumerate(results[1:], 1):
change = result['probability'] - results[i-1]['probability']
trend = "π" if change > 0 else "π" if change < 0 else "β‘οΈ"
print(f"Turn {i+1}: {trend} {change:+.3f} change")
```
### 2. A/B Testing Sales Scripts
```python
# Compare different response strategies
script_a = ["I need pricing", "Our Pro plan is $99/month per user"]
script_b = ["I need pricing", "What's your team size? I'll get you accurate pricing"]
results_a = agent.analyze_conversation_progression(script_a, print_results=False)
results_b = agent.analyze_conversation_progression(script_b, print_results=False)
print(f"Script A: {results_a[-1]['probability']:.2%}")
print(f"Script B: {results_b[-1]['probability']:.2%}")
```
### 3. Real-time Sales Assistance
```python
# Get guidance during live conversations
current_conversation = [
{"speaker": "customer", "message": "Your solution looks expensive"},
{"speaker": "sales_rep", "message": "I understand the investment concern..."}
]
results = agent.analyze_conversation_progression(current_conversation, print_results=False)
current_metrics = results[-1]['metrics']
if current_metrics['customer_engagement'] < 0.5:
print("π‘ Suggestion: Customer engagement low. Ask open-ended questions.")
elif current_metrics['sales_effectiveness'] < 0.5:
print("π‘ Suggestion: Refine approach. Focus on value proposition.")
```
## π§ Configuration Options
### Backend Selection
```python
# Use open-source backend (recommended)
agent = sales.Agent(
model_path="./sales_conversion_model.zip", # This model
embedding_model="BAAI/bge-m3",
llm_model="unsloth/Qwen3-4B-GGUF",
use_gpu=True
)
# Use Azure OpenAI backend (if you have Azure credentials)
agent = sales.Agent(
model_path="./sales_model.zip", # Azure-trained variant
azure_api_key="your_key",
azure_endpoint="your_endpoint",
azure_deployment="text-embedding-3-large",
llm_model="unsloth/Qwen3-4B-GGUF"
)
```
### LLM Model Options
```python
# Recommended models for dynamic metrics
agent = sales.Agent(
model_path="./sales_conversion_model.zip",
llm_model="unsloth/Qwen3-4B-GGUF" # Recommended
# llm_model="unsloth/Llama-3.2-3B-Instruct-GGUF" # Alternative
# llm_model="unsloth/Llama-3.1-8B-Instruct-GGUF" # Higher quality
)
```
## π Advanced Analysis
### Conversation Trend Visualization
```python
import matplotlib.pyplot as plt
scenarios = {
"Successful Sale": [
"I need a CRM", "What's your team size?", "10 people",
"Perfect! Our Pro plan fits 5-20 users", "Sounds good!"
],
"Price Objection": [
"I need a CRM", "Our premium solution is $99/month",
"Too expensive", "Let me show ROI...", "Still too much"
]
}
plt.figure(figsize=(12, 6))
for scenario_name, conversation in scenarios.items():
results = agent.analyze_conversation_progression(conversation, print_results=False)
probabilities = [r['probability'] for r in results]
turns = list(range(1, len(probabilities) + 1))
plt.plot(turns, probabilities, marker='o', linewidth=2, label=scenario_name)
plt.xlabel('Conversation Turn')
plt.ylabel('Conversion Probability')
plt.title('Conversion Probability Evolution by Scenario')
plt.legend()
plt.grid(True, alpha=0.3)
plt.show()
```
## π οΈ Installation & Setup
### Requirements
- **Python 3.11** (required for optimal compatibility)
- PyTorch with optional CUDA support
- Hugging Face Transformers
- llama-cpp-python for LLM features
### GPU Support Setup
```bash
# For NVIDIA CUDA
CMAKE_ARGS="-DGGML_CUDA=on" pip install llama-cpp-python --upgrade --force-reinstall --no-cache-dir
# For Apple Metal (M1/M2/M3)
CMAKE_ARGS="-DGGML_METAL=on" pip install llama-cpp-python --upgrade --force-reinstall --no-cache-dir
# Install DeepMost
pip install deepmost[gpu]
```
### Verify Installation
```python
import torch
from deepmost import sales
print(f"CUDA Available: {torch.cuda.is_available()}")
info = sales.get_system_info()
print(f"Supported Backends: {info['supported_backends']}")
```
## π Understanding Results
Each turn analysis provides detailed metrics:
```python
{
'turn': 1, # Turn number (1-indexed)
'speaker': 'customer', # Who spoke
'message': 'I need a CRM', # Actual message
'probability': 0.3456, # Conversion probability
'status': 'π Low', # Visual indicator
'metrics': {
'customer_engagement': 0.6, # LLM-derived score (0-1)
'sales_effectiveness': 0.4, # LLM-derived score (0-1)
'conversation_length': 3.0, # Number of messages
'progress': 0.15 # Conversation progress
}
}
```
### Status Indicators
- π’ **High** (β₯70%): Strong conversion potential
- π‘ **Medium** (β₯50%): Good potential, build value
- π **Low** (β₯30%): Needs improvement, re-engage
- π΄ **Very Low** (<30%): Poor fit, consider re-qualifying
## π Research Context
This model implements the SalesRLAgent approach described in the research paper. Key innovations include:
1. **Reinforcement Learning Framework**: PPO-based training for conversation analysis
2. **Multi-modal State Representation**: Combines embeddings with dynamic metrics
3. **Real-time Performance**: Optimized for production sales environments
4. **Turn-by-Turn Analysis**: Novel approach to tracking conversation evolution
### Model Learned Patterns
The model identifies key conversation dynamics:
- Technical buyers respond to detailed feature discussions
- Price-conscious customers need ROI justification
- Early-stage prospects require thorough needs assessment
- Engagement patterns that predict successful outcomes
## π Model Files
This repository contains:
- `sales_conversion_model.zip` - Open-source trained model (recommended)
- `sales_model.zip` - Azure OpenAI trained variant
- Training and inference scripts
- Sample conversation data
## π€ Contributing & Usage
### Using in Your Applications
```python
# Initialize with this specific model
agent = sales.Agent(
model_path="https://huggingface.co/DeepMostInnovations/sales-conversion-model-reinf-learning/resolve/main/sales_conversion_model.zip",
llm_model="unsloth/Qwen3-4B-GGUF"
)
# Integrate into your sales tools
def analyze_sales_call(conversation_messages):
results = agent.analyze_conversation_progression(conversation_messages)
return {
'final_probability': results[-1]['probability'],
'trend': 'improving' if results[-1]['probability'] > results[0]['probability'] else 'declining',
'recommendations': generate_recommendations(results)
}
```
### Custom Training
To train your own variant:
```bash
git clone https://huggingface.co/datasets/DeepMostInnovations/saas-sales-conversations
python train.py --dataset your_data.csv --model_path custom_model --timesteps 200000
```
## π License & Citation
### License
MIT License - Feel free to use and modify for your needs.
### Citation
If you use this model in your research or applications, please cite:
```bibtex
@article{nandakishor2025salesrlagent,
title={SalesRLAgent: A Reinforcement Learning Approach for Real-Time Sales Conversion Prediction and Optimization},
author={Nandakishor, M},
journal={arXiv preprint arXiv:2503.23303},
year={2025},
url={https://arxiv.org/abs/2503.23303}
}
```
## π Links & Resources
- **PyPI Package**: [https://pypi.org/project/deepmost/](https://pypi.org/project/deepmost/)
- **GitHub Repository**: [https://github.com/DeepMostInnovations/deepmost](https://github.com/DeepMostInnovations/deepmost)
- **Research Paper**: [https://arxiv.org/abs/2503.23303](https://arxiv.org/abs/2503.23303)
- **Training Dataset**: [https://huggingface.co/datasets/DeepMostInnovations/saas-sales-conversations](https://huggingface.co/datasets/DeepMostInnovations/saas-sales-conversations)
- **Documentation**: [GitHub README](https://github.com/DeepMostInnovations/deepmost/blob/main/README.md)
- **Support**: [email protected]
---
**Focus on what matters: understanding how each conversation turn impacts your sales success.** π―
Made with β€οΈ by [DeepMost Innovations](https://www.deepmostai.com/) |