File size: 18,797 Bytes
ab29941 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 |
import pandas as pd
import numpy as np
import json
import os
import argparse
import logging
from tqdm import tqdm
import chardet
import csv
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler("dataset_cleaner.log"),
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
class SaaSDatasetCleaner:
"""
Class for cleaning and validating the SaaS sales conversation dataset.
Handles issues resulting from interrupted generations.
"""
def __init__(self, input_file, output_file=None, chunk_size=1000, encoding='utf-8', skip_encoding_check=False):
"""
Initialize the cleaner.
Args:
input_file: Path to the input CSV file
output_file: Path to save cleaned dataset (defaults to 'cleaned_' + input_file)
chunk_size: Number of rows to process at once
encoding: File encoding (defaults to utf-8)
skip_encoding_check: Whether to skip encoding detection and line-by-line processing
"""
self.input_file = input_file
self.output_file = output_file or f"cleaned_{os.path.basename(input_file)}"
self.chunk_size = chunk_size
self.encoding = encoding
self.skip_encoding_check = skip_encoding_check
self.stats = {
'total_rows': 0,
'valid_rows': 0,
'invalid_json': 0,
'missing_values': 0,
'invalid_embeddings': 0,
'duplicates': 0,
'encoding_errors': 0,
'recovered_rows': 0
}
# If not skipping encoding check, detect encoding
if not self.skip_encoding_check and not self.encoding:
self.detect_encoding()
# Get the columns and prepare for processing
self.initialize_columns()
def detect_encoding(self):
"""Detect the file encoding."""
logger.info("Detecting file encoding...")
# Read a sample of the file to detect encoding
with open(self.input_file, 'rb') as f:
sample = f.read(min(10000000, os.path.getsize(self.input_file))) # Read up to 10MB
result = chardet.detect(sample)
self.encoding = result['encoding']
confidence = result['confidence']
logger.info(f"Detected encoding: {self.encoding} with confidence: {confidence:.2f}")
# If confidence is low, try common encodings
if confidence < 0.7:
logger.warning(f"Low confidence in encoding detection. Will try multiple encodings.")
self.encoding = None # Will try multiple encodings later
def initialize_columns(self):
"""Initialize column information."""
# Try to read the header with different encodings if needed
encodings_to_try = ['utf-8'] if (self.skip_encoding_check or self.encoding) else ['utf-8', 'latin1', 'iso-8859-1', 'cp1252']
for enc in encodings_to_try:
try:
# Try to read just the header
with open(self.input_file, 'r', encoding=enc, errors='replace') as f:
reader = csv.reader(f)
self.columns = next(reader)
self.encoding = enc
logger.info(f"Successfully read header with encoding: {enc}")
# Identify embedding columns
self.embedding_cols = [col for col in self.columns if col.startswith('embedding_')]
logger.info(f"Found {len(self.embedding_cols)} embedding columns")
return
except Exception as e:
logger.warning(f"Failed to read header with encoding {enc}: {str(e)}")
# If we get here, all encodings failed
logger.error("Could not read column headers with any encoding")
self.columns = []
self.embedding_cols = []
def process_line_by_line(self):
"""Process the file line by line to handle encoding issues."""
logger.info("Processing file line by line to handle encoding issues...")
# Open the output file
with open(self.output_file, 'w', encoding='utf-8', newline='') as out_file:
writer = None # Will initialize after getting headers
# Process the input file
with open(self.input_file, 'rb') as in_file:
# Process line by line
line_count = 0
valid_count = 0
for line in tqdm(in_file, desc="Reading lines"):
line_count += 1
# Try to decode with multiple encodings
decoded_line = None
for enc in ['utf-8', 'latin1', 'iso-8859-1', 'cp1252']:
try:
decoded_line = line.decode(enc)
break
except UnicodeDecodeError:
continue
if decoded_line is None:
# Could not decode with any encoding, skip line
self.stats['encoding_errors'] += 1
continue
# Parse the CSV line
try:
reader = csv.reader([decoded_line])
row = next(reader)
# Initialize writer with headers if this is the first line
if line_count == 1:
writer = csv.writer(out_file)
writer.writerow(row) # Write headers
continue
# Basic validation - check number of columns
if len(row) != len(self.columns):
logger.debug(f"Line {line_count}: Column count mismatch. Expected {len(self.columns)}, got {len(row)}")
continue
# Write the row
writer.writerow(row)
valid_count += 1
except Exception as e:
logger.debug(f"Error processing line {line_count}: {str(e)}")
self.stats['encoding_errors'] += 1
self.stats['total_rows'] = line_count - 1 # Subtract header
self.stats['recovered_rows'] = valid_count
logger.info(f"Processed {line_count} lines, recovered {valid_count} valid rows")
logger.info(f"Found {self.stats['encoding_errors']} lines with encoding errors")
def _validate_json_fields(self, df):
"""Validate and clean JSON fields."""
# List of columns that should contain JSON
json_columns = ['scenario', 'conversation', 'probability_trajectory']
for col in json_columns:
if col not in df.columns:
continue
# Create a valid indicator
df[f'{col}_valid'] = True
# Check each value
for idx, value in enumerate(df[col]):
try:
if pd.isna(value):
df.at[idx, f'{col}_valid'] = False
self.stats['invalid_json'] += 1
continue
# Attempt to parse JSON
json.loads(value)
except:
df.at[idx, f'{col}_valid'] = False
self.stats['invalid_json'] += 1
# Create an overall valid flag
valid_flags = [f'{col}_valid' for col in json_columns if f'{col}_valid' in df.columns]
if valid_flags:
df['json_valid'] = df[valid_flags].all(axis=1)
else:
df['json_valid'] = True
# Clean up the temporary columns
for col in json_columns:
if f'{col}_valid' in df.columns:
df = df.drop(columns=[f'{col}_valid'])
return df
def _validate_embeddings(self, df):
"""Check if embeddings are valid."""
if not self.embedding_cols:
return df
# Check if the first embedding column has a value as a simple check
if 'embedding_0' in df.columns:
df['embeddings_valid'] = ~df['embedding_0'].isna()
else:
df['embeddings_valid'] = True
# Count invalid embeddings
self.stats['invalid_embeddings'] += (~df['embeddings_valid']).sum()
return df
def _check_missing_values(self, df):
"""Check for missing values in important columns."""
important_cols = [
'company_id', 'company_name', 'product_name', 'conversation_id',
'conversation', 'full_text', 'outcome'
]
# Filter to columns that actually exist
important_cols = [col for col in important_cols if col in df.columns]
if not important_cols:
df['missing_important'] = False
return df
# Create a flag for rows with missing important values
missing_flags = df[important_cols].isna().any(axis=1)
df['missing_important'] = missing_flags
# Count missing values
self.stats['missing_values'] += missing_flags.sum()
return df
def _flag_valid_rows(self, df):
"""Create a single flag for valid rows."""
# A row is valid if it has valid JSON, valid embeddings, and no missing important values
required_flags = []
if 'json_valid' in df.columns:
required_flags.append('json_valid')
if 'embeddings_valid' in df.columns:
required_flags.append('embeddings_valid')
if 'missing_important' in df.columns:
required_flags.append('~missing_important')
if required_flags:
if '~missing_important' in required_flags:
required_flags.remove('~missing_important')
if required_flags:
df['row_valid'] = df[required_flags].all(axis=1) & ~df['missing_important']
else:
df['row_valid'] = ~df['missing_important']
else:
df['row_valid'] = df[required_flags].all(axis=1)
else:
df['row_valid'] = True
# Update valid rows count
self.stats['valid_rows'] += df['row_valid'].sum()
return df
def _remove_duplicates(self, df):
"""Remove duplicate conversation IDs."""
if 'conversation_id' in df.columns:
# Check for duplicates
dup_mask = df.duplicated(subset=['conversation_id'], keep='first')
df['is_duplicate'] = dup_mask
# Count duplicates
self.stats['duplicates'] += dup_mask.sum()
else:
df['is_duplicate'] = False
return df
def clean_dataset(self):
"""
Clean the dataset by first fixing encoding issues, then cleaning the data.
"""
logger.info(f"Starting to clean dataset: {self.input_file}")
# Check if the file exists
if not os.path.exists(self.input_file):
logger.error(f"Input file not found: {self.input_file}")
return
# If we're not skipping encoding checks, process line by line
if not self.skip_encoding_check:
self.process_line_by_line()
intermediate_file = self.output_file
self.output_file = f"validated_{os.path.basename(self.input_file)}"
else:
logger.info("Skipping encoding check as requested")
# Use the input file directly as the intermediate file
intermediate_file = self.input_file
# Count rows in the file for progress tracking
with open(intermediate_file, 'r', encoding=self.encoding) as f:
self.stats['total_rows'] = sum(1 for _ in f) - 1 # Subtract header
self.stats['recovered_rows'] = self.stats['total_rows']
logger.info(f"Total rows to validate: {self.stats['total_rows']}")
# Now that we have a cleaned file with proper encoding, process it for data validation
logger.info("Beginning data validation on recovered rows...")
# Get the total number of rows for progress tracking
try:
total_rows = self.stats['recovered_rows']
logger.info(f"Total rows to validate: {total_rows}")
except Exception as e:
logger.error(f"Error counting rows: {str(e)}")
total_rows = 0
# Process the dataset in chunks
try:
# Create a reader - now with known proper encoding
# Use error_bad_lines=False for older pandas versions (renamed to on_bad_lines in newer versions)
reader = pd.read_csv(
intermediate_file,
chunksize=self.chunk_size,
encoding='utf-8',
low_memory=False, # Avoid dtype warnings
error_bad_lines=False # Skip bad lines (older parameter name)
)
# Create a header flag for the first chunk
first_chunk = True
# Process each chunk
with tqdm(total=total_rows, desc="Validating data") as pbar:
for chunk_num, chunk in enumerate(reader):
logger.debug(f"Processing chunk {chunk_num+1}")
# Run validation steps
chunk = self._validate_json_fields(chunk)
chunk = self._validate_embeddings(chunk)
chunk = self._check_missing_values(chunk)
chunk = self._remove_duplicates(chunk)
chunk = self._flag_valid_rows(chunk)
# Filter to valid rows only
valid_chunk = chunk[chunk['row_valid'] & ~chunk['is_duplicate']]
# Remove the validation columns
for col in ['json_valid', 'embeddings_valid', 'missing_important', 'row_valid', 'is_duplicate']:
if col in valid_chunk.columns:
valid_chunk = valid_chunk.drop(columns=[col])
# Write the cleaned chunk
valid_chunk.to_csv(
self.output_file,
mode='w' if first_chunk else 'a',
header=first_chunk,
index=False,
encoding='utf-8'
)
# Update the first chunk flag
if first_chunk:
first_chunk = False
# Update progress
pbar.update(len(chunk))
logger.info(f"Dataset cleaning complete. Results saved to {self.output_file}")
# Print statistics
logger.info(f"Cleaning Statistics:")
logger.info(f"- Total rows processed: {self.stats['total_rows']}")
logger.info(f"- Rows recovered from encoding issues: {self.stats['recovered_rows']}")
logger.info(f"- Encoding errors: {self.stats['encoding_errors']}")
logger.info(f"- Valid rows after validation: {self.stats['valid_rows']}")
logger.info(f"- Rows with invalid JSON: {self.stats['invalid_json']}")
logger.info(f"- Rows with missing values: {self.stats['missing_values']}")
logger.info(f"- Rows with invalid embeddings: {self.stats['invalid_embeddings']}")
logger.info(f"- Duplicate rows: {self.stats['duplicates']}")
# Create a summary file
with open(f"{self.output_file}_summary.txt", 'w') as f:
f.write("Dataset Cleaning Summary\n")
f.write("=======================\n\n")
f.write(f"Input file: {self.input_file}\n")
f.write(f"Output file: {self.output_file}\n\n")
f.write(f"Total rows processed: {self.stats['total_rows']}\n")
f.write(f"Rows recovered from encoding issues: {self.stats['recovered_rows']}\n")
f.write(f"Encoding errors: {self.stats['encoding_errors']}\n")
f.write(f"Valid rows after validation: {self.stats['valid_rows']}\n")
f.write(f"Rows with invalid JSON: {self.stats['invalid_json']}\n")
f.write(f"Rows with missing values: {self.stats['missing_values']}\n")
f.write(f"Rows with invalid embeddings: {self.stats['invalid_embeddings']}\n")
f.write(f"Duplicate rows: {self.stats['duplicates']}\n")
return self.stats
except Exception as e:
logger.error(f"Error validating dataset: {str(e)}")
raise e
def main():
"""Main function to run the dataset cleaner."""
parser = argparse.ArgumentParser(description="Clean and validate SaaS sales conversation dataset")
parser.add_argument("input_file", type=str, help="Path to the input CSV file")
parser.add_argument("--output_file", type=str, default=None,
help="Path to save cleaned dataset (defaults to 'cleaned_' + input_file)")
parser.add_argument("--chunk_size", type=int, default=1000,
help="Number of rows to process at once")
parser.add_argument("--encoding", type=str, default='utf-8',
help="File encoding (defaults to utf-8)")
parser.add_argument("--skip_encoding_check", action="store_true",
help="Skip encoding detection and line-by-line processing")
args = parser.parse_args()
# Create and run the cleaner
cleaner = SaaSDatasetCleaner(
input_file=args.input_file,
output_file=args.output_file,
chunk_size=args.chunk_size,
encoding=args.encoding,
skip_encoding_check=args.skip_encoding_check
)
cleaner.clean_dataset()
if __name__ == "__main__":
main() |