File size: 18,797 Bytes
ab29941
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
import pandas as pd
import numpy as np
import json
import os
import argparse
import logging
from tqdm import tqdm
import chardet
import csv

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
    handlers=[
        logging.FileHandler("dataset_cleaner.log"),
        logging.StreamHandler()
    ]
)

logger = logging.getLogger(__name__)

class SaaSDatasetCleaner:
    """
    Class for cleaning and validating the SaaS sales conversation dataset.
    Handles issues resulting from interrupted generations.
    """
    
    def __init__(self, input_file, output_file=None, chunk_size=1000, encoding='utf-8', skip_encoding_check=False):
        """
        Initialize the cleaner.
        
        Args:
            input_file: Path to the input CSV file
            output_file: Path to save cleaned dataset (defaults to 'cleaned_' + input_file)
            chunk_size: Number of rows to process at once
            encoding: File encoding (defaults to utf-8)
            skip_encoding_check: Whether to skip encoding detection and line-by-line processing
        """
        self.input_file = input_file
        self.output_file = output_file or f"cleaned_{os.path.basename(input_file)}"
        self.chunk_size = chunk_size
        self.encoding = encoding
        self.skip_encoding_check = skip_encoding_check
        self.stats = {
            'total_rows': 0,
            'valid_rows': 0,
            'invalid_json': 0,
            'missing_values': 0,
            'invalid_embeddings': 0,
            'duplicates': 0,
            'encoding_errors': 0,
            'recovered_rows': 0
        }
        
        # If not skipping encoding check, detect encoding
        if not self.skip_encoding_check and not self.encoding:
            self.detect_encoding()
        
        # Get the columns and prepare for processing
        self.initialize_columns()
    
    def detect_encoding(self):
        """Detect the file encoding."""
        logger.info("Detecting file encoding...")
        
        # Read a sample of the file to detect encoding
        with open(self.input_file, 'rb') as f:
            sample = f.read(min(10000000, os.path.getsize(self.input_file)))  # Read up to 10MB
        
        result = chardet.detect(sample)
        self.encoding = result['encoding']
        confidence = result['confidence']
        
        logger.info(f"Detected encoding: {self.encoding} with confidence: {confidence:.2f}")
        
        # If confidence is low, try common encodings
        if confidence < 0.7:
            logger.warning(f"Low confidence in encoding detection. Will try multiple encodings.")
            self.encoding = None  # Will try multiple encodings later
    
    def initialize_columns(self):
        """Initialize column information."""
        # Try to read the header with different encodings if needed
        encodings_to_try = ['utf-8'] if (self.skip_encoding_check or self.encoding) else ['utf-8', 'latin1', 'iso-8859-1', 'cp1252']
        
        for enc in encodings_to_try:
            try:
                # Try to read just the header
                with open(self.input_file, 'r', encoding=enc, errors='replace') as f:
                    reader = csv.reader(f)
                    self.columns = next(reader)
                
                self.encoding = enc
                logger.info(f"Successfully read header with encoding: {enc}")
                
                # Identify embedding columns
                self.embedding_cols = [col for col in self.columns if col.startswith('embedding_')]
                logger.info(f"Found {len(self.embedding_cols)} embedding columns")
                
                return
                
            except Exception as e:
                logger.warning(f"Failed to read header with encoding {enc}: {str(e)}")
        
        # If we get here, all encodings failed
        logger.error("Could not read column headers with any encoding")
        self.columns = []
        self.embedding_cols = []
    
    def process_line_by_line(self):
        """Process the file line by line to handle encoding issues."""
        logger.info("Processing file line by line to handle encoding issues...")
        
        # Open the output file
        with open(self.output_file, 'w', encoding='utf-8', newline='') as out_file:
            writer = None  # Will initialize after getting headers
            
            # Process the input file
            with open(self.input_file, 'rb') as in_file:
                # Process line by line
                line_count = 0
                valid_count = 0
                
                for line in tqdm(in_file, desc="Reading lines"):
                    line_count += 1
                    
                    # Try to decode with multiple encodings
                    decoded_line = None
                    for enc in ['utf-8', 'latin1', 'iso-8859-1', 'cp1252']:
                        try:
                            decoded_line = line.decode(enc)
                            break
                        except UnicodeDecodeError:
                            continue
                    
                    if decoded_line is None:
                        # Could not decode with any encoding, skip line
                        self.stats['encoding_errors'] += 1
                        continue
                    
                    # Parse the CSV line
                    try:
                        reader = csv.reader([decoded_line])
                        row = next(reader)
                        
                        # Initialize writer with headers if this is the first line
                        if line_count == 1:
                            writer = csv.writer(out_file)
                            writer.writerow(row)  # Write headers
                            continue
                        
                        # Basic validation - check number of columns
                        if len(row) != len(self.columns):
                            logger.debug(f"Line {line_count}: Column count mismatch. Expected {len(self.columns)}, got {len(row)}")
                            continue
                        
                        # Write the row
                        writer.writerow(row)
                        valid_count += 1
                        
                    except Exception as e:
                        logger.debug(f"Error processing line {line_count}: {str(e)}")
                        self.stats['encoding_errors'] += 1
            
            self.stats['total_rows'] = line_count - 1  # Subtract header
            self.stats['recovered_rows'] = valid_count
            
            logger.info(f"Processed {line_count} lines, recovered {valid_count} valid rows")
            logger.info(f"Found {self.stats['encoding_errors']} lines with encoding errors")
    
    def _validate_json_fields(self, df):
        """Validate and clean JSON fields."""
        # List of columns that should contain JSON
        json_columns = ['scenario', 'conversation', 'probability_trajectory']
        
        for col in json_columns:
            if col not in df.columns:
                continue
                
            # Create a valid indicator
            df[f'{col}_valid'] = True
            
            # Check each value
            for idx, value in enumerate(df[col]):
                try:
                    if pd.isna(value):
                        df.at[idx, f'{col}_valid'] = False
                        self.stats['invalid_json'] += 1
                        continue
                    
                    # Attempt to parse JSON
                    json.loads(value)
                except:
                    df.at[idx, f'{col}_valid'] = False
                    self.stats['invalid_json'] += 1
        
        # Create an overall valid flag
        valid_flags = [f'{col}_valid' for col in json_columns if f'{col}_valid' in df.columns]
        if valid_flags:
            df['json_valid'] = df[valid_flags].all(axis=1)
        else:
            df['json_valid'] = True
            
        # Clean up the temporary columns
        for col in json_columns:
            if f'{col}_valid' in df.columns:
                df = df.drop(columns=[f'{col}_valid'])
                
        return df
    
    def _validate_embeddings(self, df):
        """Check if embeddings are valid."""
        if not self.embedding_cols:
            return df
        
        # Check if the first embedding column has a value as a simple check
        if 'embedding_0' in df.columns:
            df['embeddings_valid'] = ~df['embedding_0'].isna()
        else:
            df['embeddings_valid'] = True
            
        # Count invalid embeddings
        self.stats['invalid_embeddings'] += (~df['embeddings_valid']).sum()
            
        return df
    
    def _check_missing_values(self, df):
        """Check for missing values in important columns."""
        important_cols = [
            'company_id', 'company_name', 'product_name', 'conversation_id', 
            'conversation', 'full_text', 'outcome'
        ]
        
        # Filter to columns that actually exist
        important_cols = [col for col in important_cols if col in df.columns]
        
        if not important_cols:
            df['missing_important'] = False
            return df
        
        # Create a flag for rows with missing important values
        missing_flags = df[important_cols].isna().any(axis=1)
        df['missing_important'] = missing_flags
        
        # Count missing values
        self.stats['missing_values'] += missing_flags.sum()
        
        return df
    
    def _flag_valid_rows(self, df):
        """Create a single flag for valid rows."""
        # A row is valid if it has valid JSON, valid embeddings, and no missing important values
        required_flags = []
        
        if 'json_valid' in df.columns:
            required_flags.append('json_valid')
            
        if 'embeddings_valid' in df.columns:
            required_flags.append('embeddings_valid')
            
        if 'missing_important' in df.columns:
            required_flags.append('~missing_important')
        
        if required_flags:
            if '~missing_important' in required_flags:
                required_flags.remove('~missing_important')
                if required_flags:
                    df['row_valid'] = df[required_flags].all(axis=1) & ~df['missing_important']
                else:
                    df['row_valid'] = ~df['missing_important']
            else:
                df['row_valid'] = df[required_flags].all(axis=1)
        else:
            df['row_valid'] = True
        
        # Update valid rows count
        self.stats['valid_rows'] += df['row_valid'].sum()
        
        return df
    
    def _remove_duplicates(self, df):
        """Remove duplicate conversation IDs."""
        if 'conversation_id' in df.columns:
            # Check for duplicates
            dup_mask = df.duplicated(subset=['conversation_id'], keep='first')
            df['is_duplicate'] = dup_mask
            
            # Count duplicates
            self.stats['duplicates'] += dup_mask.sum()
        else:
            df['is_duplicate'] = False
            
        return df
    
    def clean_dataset(self):
        """
        Clean the dataset by first fixing encoding issues, then cleaning the data.
        """
        logger.info(f"Starting to clean dataset: {self.input_file}")
        
        # Check if the file exists
        if not os.path.exists(self.input_file):
            logger.error(f"Input file not found: {self.input_file}")
            return
        
        # If we're not skipping encoding checks, process line by line
        if not self.skip_encoding_check:
            self.process_line_by_line()
            intermediate_file = self.output_file
            self.output_file = f"validated_{os.path.basename(self.input_file)}"
        else:
            logger.info("Skipping encoding check as requested")
            # Use the input file directly as the intermediate file
            intermediate_file = self.input_file
            
            # Count rows in the file for progress tracking
            with open(intermediate_file, 'r', encoding=self.encoding) as f:
                self.stats['total_rows'] = sum(1 for _ in f) - 1  # Subtract header
                self.stats['recovered_rows'] = self.stats['total_rows']
                
            logger.info(f"Total rows to validate: {self.stats['total_rows']}")
        
        # Now that we have a cleaned file with proper encoding, process it for data validation
        logger.info("Beginning data validation on recovered rows...")
        
        # Get the total number of rows for progress tracking
        try:
            total_rows = self.stats['recovered_rows']
            logger.info(f"Total rows to validate: {total_rows}")
        except Exception as e:
            logger.error(f"Error counting rows: {str(e)}")
            total_rows = 0
        
        # Process the dataset in chunks
        try:
            # Create a reader - now with known proper encoding
            # Use error_bad_lines=False for older pandas versions (renamed to on_bad_lines in newer versions)
            reader = pd.read_csv(
                intermediate_file, 
                chunksize=self.chunk_size,
                encoding='utf-8',
                low_memory=False,  # Avoid dtype warnings
                error_bad_lines=False  # Skip bad lines (older parameter name)
            )
            
            # Create a header flag for the first chunk
            first_chunk = True
            
            # Process each chunk
            with tqdm(total=total_rows, desc="Validating data") as pbar:
                for chunk_num, chunk in enumerate(reader):
                    logger.debug(f"Processing chunk {chunk_num+1}")
                    
                    # Run validation steps
                    chunk = self._validate_json_fields(chunk)
                    chunk = self._validate_embeddings(chunk)
                    chunk = self._check_missing_values(chunk)
                    chunk = self._remove_duplicates(chunk)
                    chunk = self._flag_valid_rows(chunk)
                    
                    # Filter to valid rows only
                    valid_chunk = chunk[chunk['row_valid'] & ~chunk['is_duplicate']]
                    
                    # Remove the validation columns
                    for col in ['json_valid', 'embeddings_valid', 'missing_important', 'row_valid', 'is_duplicate']:
                        if col in valid_chunk.columns:
                            valid_chunk = valid_chunk.drop(columns=[col])
                    
                    # Write the cleaned chunk
                    valid_chunk.to_csv(
                        self.output_file,
                        mode='w' if first_chunk else 'a',
                        header=first_chunk,
                        index=False,
                        encoding='utf-8'
                    )
                    
                    # Update the first chunk flag
                    if first_chunk:
                        first_chunk = False
                    
                    # Update progress
                    pbar.update(len(chunk))
            
            logger.info(f"Dataset cleaning complete. Results saved to {self.output_file}")
            
            # Print statistics
            logger.info(f"Cleaning Statistics:")
            logger.info(f"- Total rows processed: {self.stats['total_rows']}")
            logger.info(f"- Rows recovered from encoding issues: {self.stats['recovered_rows']}")
            logger.info(f"- Encoding errors: {self.stats['encoding_errors']}")
            logger.info(f"- Valid rows after validation: {self.stats['valid_rows']}")
            logger.info(f"- Rows with invalid JSON: {self.stats['invalid_json']}")
            logger.info(f"- Rows with missing values: {self.stats['missing_values']}")
            logger.info(f"- Rows with invalid embeddings: {self.stats['invalid_embeddings']}")
            logger.info(f"- Duplicate rows: {self.stats['duplicates']}")
            
            # Create a summary file
            with open(f"{self.output_file}_summary.txt", 'w') as f:
                f.write("Dataset Cleaning Summary\n")
                f.write("=======================\n\n")
                f.write(f"Input file: {self.input_file}\n")
                f.write(f"Output file: {self.output_file}\n\n")
                f.write(f"Total rows processed: {self.stats['total_rows']}\n")
                f.write(f"Rows recovered from encoding issues: {self.stats['recovered_rows']}\n")
                f.write(f"Encoding errors: {self.stats['encoding_errors']}\n")
                f.write(f"Valid rows after validation: {self.stats['valid_rows']}\n")
                f.write(f"Rows with invalid JSON: {self.stats['invalid_json']}\n")
                f.write(f"Rows with missing values: {self.stats['missing_values']}\n")
                f.write(f"Rows with invalid embeddings: {self.stats['invalid_embeddings']}\n")
                f.write(f"Duplicate rows: {self.stats['duplicates']}\n")
            
            return self.stats
            
        except Exception as e:
            logger.error(f"Error validating dataset: {str(e)}")
            raise e

def main():
    """Main function to run the dataset cleaner."""
    parser = argparse.ArgumentParser(description="Clean and validate SaaS sales conversation dataset")
    parser.add_argument("input_file", type=str, help="Path to the input CSV file")
    parser.add_argument("--output_file", type=str, default=None, 
                       help="Path to save cleaned dataset (defaults to 'cleaned_' + input_file)")
    parser.add_argument("--chunk_size", type=int, default=1000,
                       help="Number of rows to process at once")
    parser.add_argument("--encoding", type=str, default='utf-8',
                       help="File encoding (defaults to utf-8)")
    parser.add_argument("--skip_encoding_check", action="store_true",
                       help="Skip encoding detection and line-by-line processing")
    
    args = parser.parse_args()
    
    # Create and run the cleaner
    cleaner = SaaSDatasetCleaner(
        input_file=args.input_file,
        output_file=args.output_file,
        chunk_size=args.chunk_size,
        encoding=args.encoding,
        skip_encoding_check=args.skip_encoding_check
    )
    
    cleaner.clean_dataset()

if __name__ == "__main__":
    main()