File size: 22,375 Bytes
f3d1e0c
0dc313a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3d1e0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0dc313a
 
f3d1e0c
 
 
 
 
 
 
 
0dc313a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
import argparse
import os
import json
import numpy as np
import torch
from typing import List, Dict
from transformers import (
    AutoTokenizer,
    AutoModel
)
from stable_baselines3 import PPO
from llama_cpp import Llama
import logging


# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)



class SalesConversionPredictor:
    """Sales conversion prediction class using Hugging Face models and llama.cpp"""

    def __init__(self,
                 model_path: str,
                 embedding_model_name: str = "BAAI/bge-large-en-v1.5",
                 llm_gguf_path: str = "path/to/your/llama-3.2-1b-instruct.gguf",
                 use_gpu: bool = True,
                 n_gpu_layers: int = -1,  # -1 for all layers on GPU
                 n_ctx: int = 2048,
                 use_mini_embeddings: bool = True):      # Context window size
        """Initialize with Hugging Face embeddings and llama.cpp LLM"""

        # Set device for embeddings
        self.device = torch.device("cuda" if torch.cuda.is_available() and use_gpu else "cpu")
        logger.info(f"Using device: {self.device}")

        # Initialize embedding model (BAAI/bge-large-en-v1.5)
        logger.info(f"Loading embedding model: {embedding_model_name}")
        self.embedding_tokenizer = AutoTokenizer.from_pretrained(embedding_model_name)
        self.embedding_model = AutoModel.from_pretrained(embedding_model_name).to(self.device)

        # Check if model was trained with mini embeddings
        self.use_mini_embeddings = use_mini_embeddings
        self.embedding_dim = 1024  # BGE-large outputs 1024 dimensions

        # Initialize LLM model using llama-cpp
        logger.info(f"Loading LLM model from GGUF: {llm_gguf_path}")
        self.llm = Llama.from_pretrained(
            repo_id=llm_gguf_path,
            filename="*Q4_K_M.gguf",
            n_gpu_layers=n_gpu_layers if use_gpu else 0,
            n_ctx=n_ctx,
            verbose=False,
            use_mlock=True,  # Keep model in RAM
            n_threads=None   # Use all available threads
        )

        # Load the trained PPO model (force CPU for PPO as recommended)
        ppo_device = "cpu"
        logger.info(f"Loading PPO model on {ppo_device}")
        self.ppo_model = PPO.load(model_path, device=ppo_device)

        # Store conversation states
        self.conversation_states = {}

    def _normalize_history_format(self, history: List[Dict[str, str]]) -> List[Dict[str, str]]:
        """Normalize history format to ensure consistency"""
        normalized_history = []

        for msg in history:
            # Extract role/speaker
            role = msg.get('role', msg.get('speaker', ''))

            # Extract content/message
            content = msg.get('content', msg.get('message', ''))

            # Map role to expected format for the model
            if role in ['user', 'customer']:
                speaker = 'user'
            elif role in ['assistant', 'sales_rep']:
                speaker = 'sales_rep'
            else:
                speaker = role  # Keep as is

            normalized_history.append({
                'speaker': speaker,
                'message': content
            })

        return normalized_history

    def get_embedding(self, text: str) -> np.ndarray:
        """Get embedding for text using BAAI/bge-large-en-v1.5"""
        try:
            # Tokenize input
            inputs = self.embedding_tokenizer(
                text,
                padding=True,
                truncation=True,
                return_tensors='pt',
                max_length=8192
            ).to(self.device)

            # Get model outputs
            with torch.no_grad():
                model_output = self.embedding_model(**inputs)
                # Get sentence embeddings from the model (mean pooling)
                embeddings = model_output.last_hidden_state
                attention_mask = inputs['attention_mask']

                # Apply mean pooling
                input_mask_expanded = attention_mask.unsqueeze(-1).expand(embeddings.size()).float()
                sum_embeddings = torch.sum(embeddings * input_mask_expanded, 1)
                sum_mask = input_mask_expanded.sum(1)

                # Avoid division by zero
                sum_mask = torch.clamp(sum_mask, min=1e-9)
                mean_embeddings = sum_embeddings / sum_mask

                # Normalize embeddings
                embeddings = torch.nn.functional.normalize(mean_embeddings, p=2, dim=1)

                # Move to CPU and convert to numpy
                bge_embedding = embeddings.cpu().numpy()[0].astype(np.float32)

                # BGE-large outputs 1024 dimensions by default
                logger.info(f"BGE embedding shape: {bge_embedding.shape}")

                # Ensure we have exactly 1024 dimensions
                if len(bge_embedding) != 1024:
                    logger.warning(f"Expected 1024 dimensions, got {len(bge_embedding)}")
                    # Pad or truncate to 1024
                    if len(bge_embedding) < 1024:
                        padded = np.zeros(1024, dtype=np.float32)
                        padded[:len(bge_embedding)] = bge_embedding
                        bge_embedding = padded
                    else:
                        bge_embedding = bge_embedding[:1024]

                return bge_embedding

        except Exception as e:
            logger.error(f"Error getting embedding: {str(e)}")
            # Return zeros as fallback with expected dimensions
            return np.zeros(1024, dtype=np.float32)

    def analyze_conversation_metrics(self, history: List[Dict[str, str]]) -> Dict[str, float]:
        """Analyze conversation to extract key metrics using LLM"""
        try:
            # Normalize history format first
            normalized_history = self._normalize_history_format(history)

            # Format conversation for analysis
            conversation_text = ""
            for msg in normalized_history:
                speaker = msg.get('speaker', '')
                message = msg.get('message', '')
                conversation_text += f"{speaker}: {message}\n\n"

            # Create prompt for metrics analysis
            prompt = f"""Analyze this sales conversation and rate each metric from 0.0 to 1.0:

customer_engagement:
sales_effectiveness:

Respond only with numbers in the format shown above.

Conversation:
{conversation_text}"""

            # Get analysis from LLM
            response = self.generate_llm_response(prompt, max_new_tokens=50)
            print("response", response)

            # Parse metrics
            lines = response.strip().split('\n')
            print("lines", lines)

            engagement = 0.5
            effectiveness = 0.5

            for line in lines:
                if 'customer_engagement' in line.lower():
                    try:
                        engagement = float(line.split(':')[-1].strip())
                        # Ensure it's between 0 and 1
                        engagement = max(0.0, min(1.0, engagement))
                    except:
                        pass
                elif 'sales_effectiveness' in line.lower():
                    try:
                        effectiveness = float(line.split(':')[-1].strip())
                        # Ensure it's between 0 and 1
                        effectiveness = max(0.0, min(1.0, effectiveness))
                    except:
                        pass

            return {
                'customer_engagement': engagement,
                'sales_effectiveness': effectiveness,
                'conversation_length': len(normalized_history),
                'outcome': 0.5,  # Unknown at inference time
                'progress': min(1.0, len(normalized_history) / 20)
            }

        except Exception as e:
            logger.error(f"Error analyzing conversation: {str(e)}")
            # Return default values
            return {
                'customer_engagement': 0.5,
                'sales_effectiveness': 0.5,
                'conversation_length': len(history),
                'outcome': 0.5,
                'progress': min(1.0, len(history) / 20)
            }

    def generate_llm_response(self, prompt: str, max_new_tokens: int = 2048) -> str:
        """Generate response using llama-cpp"""
        try:
            # Generate response
            response = self.llm(
                prompt,
                max_tokens=max_new_tokens,
                temperature=0.001,
                top_p=0.95,
                repeat_penalty=1.1,
                stop=["User:", "Assistant:", "\n\n"]
            )

            # Extract generated text
            generated_text = response['choices'][0]['text']

            # Clean up the response
            generated_text = generated_text.strip()

            return generated_text

        except Exception as e:
            logger.error(f"Error generating LLM response: {str(e)}")
            return "I apologize, but I encountered an error generating a response."

    def create_state_vector(self,
                           embedding: np.ndarray,
                           metrics: Dict[str, float],
                           turn_number: int,
                           previous_probs: List[float]) -> np.ndarray:
        """Create state vector for model input"""

        # Create metric array (ensure all 5 metrics are included)
        metric_values = np.array([
            metrics['customer_engagement'],
            metrics['sales_effectiveness'],
            metrics['conversation_length'],
            metrics['outcome'],
            metrics['progress']
        ], dtype=np.float32)

        # Create turn info
        turn_info = np.array([turn_number], dtype=np.float32)

        # Pad probability history
        padded_probs = np.zeros(10, dtype=np.float32)
        if previous_probs:
            # Handle the case where previous_probs might have more than 10 elements
            recent_probs = previous_probs[-10:] if len(previous_probs) > 10 else previous_probs
            padded_probs[:len(recent_probs)] = recent_probs

        # Keep original 1024-dimensional embedding without expanding
        if len(embedding) != 1024:
            logger.warning(f"Unexpected embedding size: {len(embedding)}. Expected 1024. Creating zero embedding.")
            embedding = np.zeros(1024, dtype=np.float32)

        # Total expected: 1024 + 5 + 1 + 10 = 1040
        combined = np.concatenate([
            embedding,          # 1024 dimensions
            metric_values,      # 5 dimensions
            turn_info,          # 1 dimension
            padded_probs        # 10 dimensions
        ])

        logger.info(f"State vector shape: {combined.shape} (expected: 1040)")
        return combined
        
    def predict_conversion(self, conversation_id: str, history: List[Dict[str, str]],
                          new_response: str) -> float:
        """Predict conversion probability for a conversation"""
        logger.info(f"Predicting conversion for conversation {conversation_id}")

        # Normalize history format
        normalized_history = self._normalize_history_format(history)

        # Update history with new response
        updated_history = normalized_history.copy()
        updated_history.append({'speaker': 'sales_rep', 'message': new_response})

        # Get full conversation text for embedding
        full_text = " ".join([msg.get('message', '') for msg in updated_history])

        # Get embedding (1024 dimensions)
        embedding = self.get_embedding(full_text)
        logger.info(f"Embedding shape: {embedding.shape}")

        # Analyze conversation with updated history
        metrics = self.analyze_conversation_metrics(updated_history)
        logger.info(f"Metrics: engagement={metrics['customer_engagement']:.2f}, effectiveness={metrics['sales_effectiveness']:.2f}")

        # Get turn number (each conversation turn includes user + assistant)
        turn = len(updated_history) // 2

        # Get previous probabilities
        if conversation_id in self.conversation_states:
            previous_probs = self.conversation_states[conversation_id]['probabilities']
        else:
            previous_probs = [0.5]  # Initial probability

        # Create state vector
        state_vector = self.create_state_vector(embedding, metrics, turn, previous_probs)

        # Convert to numpy array if it's not already
        if isinstance(state_vector, torch.Tensor):
            state_vector = state_vector.cpu().numpy()

        # Ensure it's a numpy array
        state_vector = np.array(state_vector, dtype=np.float32)

        # Log the final shape
        logger.info(f"Final state vector shape: {state_vector.shape}")

        # Predict using PPO model
        try:
            # Fix deprecation warning by extracting scalar properly
            action, _ = self.ppo_model.predict(state_vector, deterministic=True)

            # Extract the scalar value
            if hasattr(action, 'item'):
                predicted_prob = float(action.item())
            elif isinstance(action, np.ndarray):
                predicted_prob = float(action[0])
            else:
                predicted_prob = float(action)

            # Ensure probability is between 0 and 1
            predicted_prob = max(0.0, min(1.0, predicted_prob))

        except Exception as e:
            logger.error(f"Error during prediction: {str(e)}")
            # Fallback prediction
            predicted_prob = 0.5

        # Update state
        self.conversation_states[conversation_id] = {
            'history': updated_history,
            'probabilities': previous_probs + [predicted_prob]
        }

        logger.info(f"Predicted conversion probability: {predicted_prob:.4f}")
        return predicted_prob

    def generate_response(self, conversation_id: str, history: List[Dict[str, str]],
                         user_input: str, system_prompt: str = None) -> str:
        """Generate a response using llama-cpp and add conversion probability"""

        # Normalize history format
        normalized_history = self._normalize_history_format(history)

        # Format conversation for the LLM
        messages = []

        # Add system prompt if provided
        if system_prompt:
            messages.append(f"System: {system_prompt}\n")
        else:
            messages.append("System: You are a helpful sales assistant.\n")

        # Add conversation history
        for msg in normalized_history:
            speaker = msg.get('speaker', '')
            message = msg.get('message', '')

            if speaker == 'user':
                messages.append(f"User: {message}\n")
            elif speaker == 'sales_rep':
                messages.append(f"Assistant: {message}\n")

        # Add the latest user input
        messages.append(f"User: {user_input}\n")
        messages.append("Assistant: ")

        # Create prompt
        prompt = "".join(messages)

        # Generate LLM response
        llm_response = self.generate_llm_response(prompt, max_new_tokens=2048)
        print(llm_response)

        # Add user message to history for prediction
        history_with_user = history.copy()
        history_with_user.append({'role': 'user', 'content': user_input})

        # Predict conversion probability
        probability = self.predict_conversion(conversation_id, history_with_user, llm_response)

        # Format response with probability
        formatted_response = self.format_response_with_probability(llm_response, probability)

        return formatted_response

    def format_response_with_probability(self, response: str, probability: float) -> str:
        """Format response with conversion probability"""
        probability_pct = probability * 100

        if probability >= 0.38:
            indicator = "🟒 Conversion Highly Likely"
        elif probability >= 0.37:
            indicator = "🟑 Good Conversion Potential"
        elif probability >= 0.35:
            indicator = "🟠 Moderate Conversion Potential"
        else:
            indicator = "πŸ”΄ Conversion Unlikely"

        formatted_response = (
            f"{response}\n\n"
            f"---\n"
            f"{indicator} ({probability_pct:.1f}%)\n"
        )

        return formatted_response

    def format_prediction_result(self, probability: float) -> Dict[str, str]:
        """Format prediction result with status and suggestion"""
        probability_pct = probability * 100

        if probability >= 0.38:
            status = "🟒 Conversion Highly Likely"
            suggestion = "Follow up with specific next steps or a call to action."
        elif probability >= 0.37:
            status = "🟑 Good Conversion Potential"
            suggestion = "Address any remaining concerns and guide toward a decision."
        elif probability >= 0.35:
            status = "🟠 Moderate Conversion Potential"
            suggestion = "Focus on building value and addressing objections."
        else:
            status = "πŸ”΄ Conversion Unlikely"
            suggestion = "Reframe the conversation or qualify needs better."

        return {
            "probability": probability,
            "formatted_probability": f"{probability_pct:.1f}%",
            "status": status,
            "suggestion": suggestion
        }


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Sales Conversion Predictor")
    parser.add_argument(
        "--model_path",
        type=str,
        default="/content/sales-conversion-model-reinf-learning/sales_conversion_model",
        help="Path to the trained PPO model zip file."
    )
    parser.add_argument(
        "--embedding_model_name",
        type=str,
        default="BAAI/bge-m3", # Defaulting to bge-m3 as per example
        help="Name of the Hugging Face embedding model (e.g., 'BAAI/bge-m3', 'BAAI/bge-large-en-v1.5')."
    )
    parser.add_argument(
        "--llm_gguf_path",
        type=str,
        default="unsloth/gemma-3-4b-it-GGUF", # Defaulting to a repo ID as per example
        help="Path to the GGUF LLM model file, a local directory containing GGUF files, or a HuggingFace repo_id."
    )
    parser.add_argument(
        "--no_gpu",
        action="store_true",
        help="Disable GPU usage (use CPU only)."
    )
    parser.add_argument(
        "--n_gpu_layers",
        type=int,
        default=-1, # Default to all layers on GPU for llama.cpp
        help="Number of LLM layers to offload to GPU. -1 for all, 0 for none."
    )
    parser.add_argument(
        "--n_ctx",
        type=int,
        default=2048,
        help="Context window size for the LLM."
    )

    args = parser.parse_args()

    # Initialize predictor with GGUF model
    predictor = SalesConversionPredictor(
        model_path=args.model_path,
        embedding_model_name=args.embedding_model_name,
        llm_gguf_path=args.llm_gguf_path,
        use_gpu=not args.no_gpu,
        n_gpu_layers=args.n_gpu_layers,
        n_ctx=args.n_ctx,
        use_mini_embeddings=True # Kept from original, PPO model should match this if it affects state vector.
                                 # Currently, embedding dim is fixed at 1024 in code.
    )
    # Test with different conversation scenarios
    scenarios = [
        {
            "id": "negative_outcome",
            "history": [
                {"role": "user", "content": "I'm looking for a CRM solution for my startup."},
                {"role": "assistant", "content": "I'd be happy to help you find the right CRM solution. What's the size of your team and what are your main requirements?"},
                {"role": "user", "content": "We're a team of 10 and need lead management and email automation."},
                {"role": "assistant", "content": "Our CRM offers excellent lead management and built-in email automation that would be perfect for a team of 10. Let me show you how it works."},
                {"role": "user", "content": "not interested, bye"}
            ],
            "response": "ok, thank you for the interest"
        },
        {
            "id": "positive_outcome",
            "history": [
                {"role": "user", "content": "I need a project management tool urgently."},
                {"role": "assistant", "content": "I can definitely help you with that! Our tool is designed for quick implementation. What's your main priority?"},
                {"role": "user", "content": "We need to track tasks and deadlines for 20 people."},
                {"role": "assistant", "content": "Perfect! Our solution handles that easily with real-time collaboration features. We can get you set up today with a free trial."},
                {"role": "user", "content": "That sounds great! What's the pricing?"}
            ],
            "response": "For a team of 20, it's $299/month with all features included. You get 14 days free to test everything. Shall I send you the signup link?"
        },
        {
            "id": "neutral_outcome",
            "history": [
                {"role": "user", "content": "Tell me about your software."},
                {"role": "assistant", "content": "Our software helps businesses manage their operations more efficiently. What specific area are you looking to improve?"},
                {"role": "user", "content": "Just browsing for now."}
            ],
            "response": "No problem! Feel free to explore our website for more information, and I'm here if you have any questions."
        }
    ]

    # Test each scenario
    for scenario in scenarios:
        print(f"\n=== Testing Scenario: {scenario['id']} ===")

        # Predict conversion probability
        probability = predictor.predict_conversion(
            conversation_id=scenario['id'],
            history=scenario['history'],
            new_response=scenario['response']
        )

        # Get formatted result
        result = predictor.format_prediction_result(probability)

        # Print results
        print(f"Response: {scenario['response']}")
        print(f"Probability: {result['formatted_probability']}")
        print(f"Status: {result['status']}")
        print(f"Suggestion: {result['suggestion']}")
        print("-" * 50)