File size: 26,061 Bytes
51c0731
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
import os
import json
import pandas as pd
import numpy as np
from typing import List, Dict, Tuple, Optional, Any
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from sklearn.model_selection import train_test_split
from stable_baselines3 import PPO
from stable_baselines3.common.vec_env import DummyVecEnv, SubprocVecEnv
from stable_baselines3.common.utils import set_random_seed
from stable_baselines3.common.torch_layers import BaseFeaturesExtractor
from stable_baselines3.common.callbacks import EvalCallback, CheckpointCallback
import gymnasium as gym
from gymnasium import spaces
from dataclasses import dataclass
import logging
import random
from tqdm import tqdm
import time
import matplotlib.pyplot as plt
import seaborn as sns
from datetime import datetime
import argparse
import psutil
import gc

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
    handlers=[
        logging.FileHandler("sales_training.log"),
        logging.StreamHandler()
    ]
)

logger = logging.getLogger(__name__)

# GPU Setup
if torch.cuda.is_available():
    device = torch.device("cuda")
    logger.info(f"Using GPU: {torch.cuda.get_device_name(0)}")
else:
    device = torch.device("cpu")
    logger.info("GPU not available, using CPU")

@dataclass
class ConversationState:
    """Represents the state of a sales conversation for the RL environment."""
    conversation_history: List[Dict[str, str]]
    embedding: np.ndarray
    conversation_metrics: Dict[str, float]
    turn_number: int
    conversion_probabilities: List[float]
    
    @property
    def state_vector(self) -> np.ndarray:
        """Create a flat vector representation of the conversation state."""
        # Combine embedding with conversation metrics and history stats
        metric_values = np.array(list(self.conversation_metrics.values()), dtype=np.float32)
        turn_info = np.array([self.turn_number], dtype=np.float32)
        prob_history = np.array(self.conversion_probabilities, dtype=np.float32)
        
        # Pad probability history to a fixed size if needed
        padded_probs = np.zeros(10, dtype=np.float32)
        padded_probs[:len(prob_history)] = prob_history[-10:] if len(prob_history) > 10 else prob_history
        
        return np.concatenate([
            self.embedding,
            metric_values,
            turn_info,
            padded_probs
        ])

# Custom neural network for feature extraction - optimized for GPU
class CustomLN(BaseFeaturesExtractor):
    """Custom feature extractor for the embedding vector using linear layers."""
    
    def __init__(self, observation_space: gym.spaces.Box, features_dim: int = 128):
        super().__init__(observation_space, features_dim)
        
        # Get the input dimension from the observation space
        n_input_channels = observation_space.shape[0]
        
        # Create a network with linear layers
        self.linear_network = nn.Sequential(
            nn.Linear(n_input_channels, 512),
            nn.ReLU(),
            nn.Linear(512, 256),
            nn.ReLU(),
            nn.Linear(256, features_dim),
            nn.ReLU(),
        ).to(device)
        
    def forward(self, observations: torch.Tensor) -> torch.Tensor:
        return self.linear_network(observations)

class SalesConversionEnv(gym.Env):
    """Reinforcement learning environment for sales conversation prediction."""
    
    def __init__(self, conversations_df: pd.DataFrame, use_miniembeddings=True):
        """
        Initialize the environment.
        
        Args:
            conversations_df: DataFrame containing sales conversations
            use_miniembeddings: If True, reduce embedding dimension to save memory
        """
        super().__init__()
        
        self.conversations_df = conversations_df
        self.current_conversation_idx = 0
        self.max_turns = 20
        self.use_miniembeddings = use_miniembeddings
        
        # Get embedding dimension
        embedding_cols = [col for col in conversations_df.columns if col.startswith('embedding_')]
        self.full_embedding_dim = len(embedding_cols)
        
        # Option to use reduced embedding dimension to save memory
        if use_miniembeddings:
            self.embedding_dim = min(1024, self.full_embedding_dim)  # Use 1024 instead of 256
            logger.info(f"Using reduced embeddings: {self.full_embedding_dim} -> {self.embedding_dim}")
        else:
            self.embedding_dim = self.full_embedding_dim
        
        # Action space: Probability of conversion (0-1)
        self.action_space = spaces.Box(
            low=np.array([0.0]),
            high=np.array([1.0]),
            dtype=np.float32
        )
        
        # Observation space: Embeddings + metrics + turn info + probability history
        self.observation_space = spaces.Box(
            low=-np.inf,
            high=np.inf,
            shape=(self.embedding_dim + 5 + 1 + 10,),  # Embeddings + 5 metrics + turn number + prob history
            dtype=np.float32
        )
        
        self.current_turn = 0
        self.conversation_state = None
        self.true_probabilities = None
        
        logger.info(f"Initialized SalesConversionEnv with {len(conversations_df)} conversations")
    
    def _parse_conversation(self, conversation_idx: int) -> Tuple[List[Dict[str, str]], Dict[str, float], Dict[int, float]]:
        """Parse conversation data from the dataset."""
        row = self.conversations_df.iloc[conversation_idx]
        
        # Parse messages
        try:
            messages = json.loads(row['conversation'])
        except (json.JSONDecodeError, TypeError) as e:
            # Create a fallback simple conversation
            messages = [
                {"speaker": "customer", "message": "I'm interested in your product."},
                {"speaker": "sales_rep", "message": "Thank you for your interest. How can I help?"}
            ]
        
        # Parse metrics
        metrics = {
            'customer_engagement': float(row.get('customer_engagement', 0.5)),
            'sales_effectiveness': float(row.get('sales_effectiveness', 0.5)),
            'conversation_length': int(row.get('conversation_length', len(messages))),
            'outcome': float(row.get('outcome', 0.5)),
            'progress': 0.0  # Will be updated during stepping
        }
        
        # Parse probability trajectory
        try:
            probability_trajectory = json.loads(row['probability_trajectory'])
            # Convert string keys to integers
            probability_trajectory = {int(k): float(v) for k, v in probability_trajectory.items()}
        except (json.JSONDecodeError, TypeError, KeyError) as e:
            # If no trajectory or error, create a simple one
            if row.get('outcome', 0) == 1:
                probability_trajectory = {i: min(0.5 + i * 0.05, 0.95) for i in range(len(messages))}
            else:
                probability_trajectory = {i: max(0.5 - i * 0.05, 0.05) for i in range(len(messages))}
        
        return messages, metrics, probability_trajectory
    
    def _get_embedding_for_turn(self, conversation_idx: int, turn: int) -> np.ndarray:
        """Get the embedding for a specific conversation at a specific turn."""
        row = self.conversations_df.iloc[conversation_idx]
        
        # Get all embedding values
        embedding_cols = [col for col in row.index if col.startswith('embedding_')]
        try:
            embedding = row[embedding_cols].values.astype(np.float32)
            
            # Check for NaN or Inf values
            if np.isnan(embedding).any() or np.isinf(embedding).any():
                embedding = np.zeros(len(embedding_cols), dtype=np.float32)
        except Exception as e:
            embedding = np.zeros(len(embedding_cols), dtype=np.float32)
        
        # Use dimensionality reduction for very large embeddings to save memory
        if self.use_miniembeddings and len(embedding) > self.embedding_dim:
            # Simple dimensionality reduction - average pooling
            embedding = np.array([
                np.mean(embedding[i:i+self.full_embedding_dim//self.embedding_dim])
                for i in range(0, self.full_embedding_dim, self.full_embedding_dim//self.embedding_dim)
            ][:self.embedding_dim])
        
        # Simple scaling based on turn progress to simulate evolving embeddings
        progress = min(1.0, turn / self.max_turns)
        scaled_embedding = embedding * (0.6 + 0.4 * progress)
        
        return scaled_embedding
    
    def reset(self, seed=None, options=None) -> Tuple[np.ndarray, Dict]:
        """Reset the environment to start a new episode."""
        super().reset(seed=seed)
        
        # Select a random conversation
        self.current_conversation_idx = np.random.randint(0, len(self.conversations_df))
        self.current_turn = 0
        
        # Parse conversation data
        messages, metrics, probability_trajectory = self._parse_conversation(self.current_conversation_idx)
        self.true_probabilities = probability_trajectory
        self.max_turns = min(20, len(messages))
        
        # Initialize state
        embedding = self._get_embedding_for_turn(self.current_conversation_idx, 0)
        metrics = metrics.copy()
        metrics['progress'] = 0.0
        
        self.conversation_state = ConversationState(
            conversation_history=messages[:1] if messages else [],
            embedding=embedding,
            conversation_metrics=metrics,
            turn_number=0,
            conversion_probabilities=[self.true_probabilities.get(0, 0.5)]
        )
        
        return self.conversation_state.state_vector, {}
    
    def step(self, action: np.ndarray) -> Tuple[np.ndarray, float, bool, bool, Dict]:
        """Step the environment forward by one turn."""
        # Extract predicted probability
        predicted_prob = float(action[0])
        
        # Get true probability for current turn
        true_prob = self.true_probabilities.get(self.current_turn, 0.5)
        
        # Calculate reward based on prediction accuracy
        reward = 1.0 - abs(predicted_prob - true_prob)
        
        # Apply higher reward/penalty at final step based on outcome
        if self.current_turn == self.max_turns - 1:
            outcome = self.conversation_state.conversation_metrics['outcome']
            # Stronger penalty for confident wrong predictions
            if outcome == 1 and predicted_prob < 0.5:
                reward -= 1.0 * (0.5 - predicted_prob)
            elif outcome == 0 and predicted_prob > 0.5:
                reward -= 1.0 * (predicted_prob - 0.5)
        
        # Update turn
        self.current_turn += 1
        done = self.current_turn >= self.max_turns
        
        if not done:
            # Update state
            embedding = self._get_embedding_for_turn(self.current_conversation_idx, self.current_turn)
            metrics = self.conversation_state.conversation_metrics.copy()
            metrics['progress'] = self.current_turn / self.max_turns
            
            messages = self._parse_conversation(self.current_conversation_idx)[0]
            history = messages[:self.current_turn+1] if self.current_turn+1 < len(messages) else messages
            
            # Add current prediction to history
            conv_probs = self.conversation_state.conversion_probabilities.copy()
            conv_probs.append(predicted_prob)
            
            self.conversation_state = ConversationState(
                conversation_history=history,
                embedding=embedding,
                conversation_metrics=metrics,
                turn_number=self.current_turn,
                conversion_probabilities=conv_probs
            )
        
        return self.conversation_state.state_vector, reward, done, False, {'true_prob': true_prob}

class SalesRLTrainer:
    """Trainer for the sales conversion prediction RL model."""
    
    def __init__(self, dataset_path: str, model_save_path: str = "sales_conversion_model", 
                 use_miniembeddings: bool = True, batch_size: int = 64):
        """
        Initialize the trainer.
        
        Args:
            dataset_path: Path to the sales conversation dataset
            model_save_path: Path to save trained model
            use_miniembeddings: Whether to use reduced embeddings to save memory
            batch_size: Batch size for training
        """
        self.dataset_path = dataset_path
        self.model_save_path = model_save_path
        self.use_miniembeddings = use_miniembeddings
        self.batch_size = batch_size
        self.df = None
        self.model = None
        self.train_df = None
        self.val_df = None
        
        # Create directory for models and logs
        os.makedirs(os.path.dirname(model_save_path) if os.path.dirname(model_save_path) else ".", exist_ok=True)
        os.makedirs("logs", exist_ok=True)
        
        logger.info(f"Initialized SalesRLTrainer with dataset: {dataset_path}")
        
        # Monitor memory usage
        self._log_memory_usage("Initial")
    
    def _log_memory_usage(self, step=""):
        """Log current memory usage."""
        process = psutil.Process(os.getpid())
        cpu_mem = process.memory_info().rss / 1024 / 1024  # MB
        
        gpu_mem = 0
        if torch.cuda.is_available():
            gpu_mem = torch.cuda.memory_allocated() / 1024 / 1024  # MB
        
        logger.info(f"Memory usage [{step}] - CPU: {cpu_mem:.2f} MB, GPU: {gpu_mem:.2f} MB")
    
    def load_dataset(self, validation_split=0.1, sample_size=None):
        """
        Load and preprocess the sales conversation dataset.
        
        Args:
            validation_split: Proportion of data for validation
            sample_size: Optional limit on dataset size to save memory
        """
        logger.info(f"Loading dataset from {self.dataset_path}")
        try:
            # Read dataset in chunks to reduce memory usage
            chunks = []
            for chunk in pd.read_csv(self.dataset_path, chunksize=10000):
                chunks.append(chunk)
                
                # If sample size specified, break after enough chunks
                if sample_size and sum(len(c) for c in chunks) >= sample_size:
                    break
            
            self.df = pd.concat(chunks)
            
            # If sample size specified, limit the dataset
            if sample_size and len(self.df) > sample_size:
                self.df = self.df.sample(sample_size, random_state=42)
            
            logger.info(f"Loaded dataset with shape: {self.df.shape}")
            
            # Validate embedding columns
            embedding_cols = [col for col in self.df.columns if col.startswith('embedding_')]
            if not embedding_cols:
                raise ValueError("No embedding columns found in the dataset")
            
            logger.info(f"Found {len(embedding_cols)} embedding dimensions")
            
            # Clean the dataframe to reduce memory usage
            for col in self.df.columns:
                if col.startswith('embedding_'):
                    # Convert embedding columns to float32
                    self.df[col] = self.df[col].astype(np.float32)
                elif col in ['outcome', 'customer_engagement', 'sales_effectiveness']:
                    # Convert numeric columns to float32
                    self.df[col] = self.df[col].astype(np.float32)
                elif col == 'conversation_length':
                    # Convert to int32
                    self.df[col] = self.df[col].astype(np.int32)
            
            # Split into train and validation sets
            train_idx, val_idx = train_test_split(
                np.arange(len(self.df)),
                test_size=validation_split,
                random_state=42
            )
            
            self.train_df = self.df.iloc[train_idx].reset_index(drop=True)
            self.val_df = self.df.iloc[val_idx].reset_index(drop=True)
            
            logger.info(f"Split dataset: {len(self.train_df)} training samples, {len(self.val_df)} validation samples")
            
            # Monitor memory
            self._log_memory_usage("After dataset load")
            
            # Free up memory
            gc.collect()
            
        except Exception as e:
            logger.error(f"Error loading dataset: {str(e)}")
            raise
    
    def train(self, total_timesteps: int = 100000, learning_rate: float = 0.0003, n_envs: int = 1):
        """
        Train the RL model with GPU acceleration.
        
        Args:
            total_timesteps: Total timesteps for training
            learning_rate: Learning rate for the optimizer
            n_envs: Number of parallel environments
        """
        if self.train_df is None:
            self.load_dataset()
        
        # Use only 1 environment with GPU for better memory efficiency
        n_envs = 1 if torch.cuda.is_available() else n_envs
        
        # Create training environment
        def make_env(df_subset):
            """Create environment with a subset of data."""
            def _init():
                return SalesConversionEnv(df_subset, use_miniembeddings=self.use_miniembeddings)
            return _init
        
        # Create subsets of data for each environment
        if n_envs > 1:
            subset_size = len(self.train_df) // n_envs
            env_makers = [
                make_env(self.train_df.iloc[i*subset_size:(i+1)*subset_size if i < n_envs-1 else len(self.train_df)])
                for i in range(n_envs)
            ]
            env = SubprocVecEnv(env_makers)
        else:
            env = DummyVecEnv([make_env(self.train_df)])
        
        # Create validation environment
        val_env = DummyVecEnv([make_env(self.val_df)])
        
        # Configure policy network
        policy_kwargs = dict(
            activation_fn=nn.ReLU,
            net_arch=[dict(pi=[128, 64], vf=[128, 64])],  # Smaller network to save memory
            features_extractor_class=CustomLN,
            features_extractor_kwargs=dict(features_dim=64)
        )
        
        # Initialize model with GPU support
        self.model = PPO(
            "MlpPolicy",
            env,
            policy_kwargs=policy_kwargs,
            learning_rate=learning_rate,
            n_steps=512,  # Smaller n_steps to save memory
            batch_size=self.batch_size,
            n_epochs=5,  # Fewer epochs to speed up training
            gamma=0.99,
            gae_lambda=0.95,
            clip_range=0.2,
            clip_range_vf=0.2,
            ent_coef=0.01,
            vf_coef=0.5,
            max_grad_norm=0.5,
            tensorboard_log="./logs/",
            verbose=1,
            device=device  # Use GPU if available
        )
        
        # Set up callbacks
        eval_callback = EvalCallback(
            val_env,
            best_model_save_path=f"{os.path.dirname(self.model_save_path)}/best_model",
            log_path="./logs/",
            eval_freq=max(2000, total_timesteps // 20),  # Evaluate less frequently to save time
            deterministic=True,
            render=False
        )
        
        checkpoint_callback = CheckpointCallback(
            save_freq=max(5000, total_timesteps // 10),  # Save less frequently to reduce I/O
            save_path="./logs/checkpoints/",
            name_prefix="sales_model",
            save_replay_buffer=False,
            save_vecnormalize=False
        )
        
        # Monitor memory before training
        self._log_memory_usage("Before training")
        
        logger.info(f"Starting training for {total_timesteps} timesteps with {n_envs} environments on {device}")
        self.model.learn(
            total_timesteps=total_timesteps,
            callback=[eval_callback, checkpoint_callback],
            progress_bar=True
        )
        
        # Save final model
        self.model.save(self.model_save_path)
        logger.info(f"Model saved to {self.model_save_path}")
        
        # Monitor memory after training
        self._log_memory_usage("After training")
        
        # Clean up to free memory
        env.close()
        val_env.close()
        gc.collect()
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
    
    def evaluate(self, num_episodes: int = 100):
        """Evaluate the trained model."""
        if self.model is None:
            logger.info(f"Loading model from {self.model_save_path}")
            self.model = PPO.load(self.model_save_path, device=device)
        
        if self.val_df is None:
            self.load_dataset()
        
        # Create environment
        env = SalesConversionEnv(self.val_df, use_miniembeddings=self.use_miniembeddings)
        
        logger.info(f"Evaluating model on {num_episodes} episodes")
        
        rewards = []
        accuracies = []
        predictions = []
        true_outcomes = []
        
        for i in tqdm(range(num_episodes), desc="Evaluating"):
            obs, _ = env.reset()
            done = False
            episode_reward = 0
            episode_predictions = []
            true_values = []
            
            while not done:
                action, _ = self.model.predict(obs, deterministic=True)
                obs, reward, done, _, info = env.step(action)
                
                episode_reward += reward
                episode_predictions.append(float(action[0]))
                true_values.append(info['true_prob'])
            
            rewards.append(episode_reward)
            
            # Calculate accuracy based on final prediction
            final_pred = episode_predictions[-1]
            outcome = env.conversation_state.conversation_metrics['outcome']
            correct = (final_pred >= 0.5 and outcome == 1) or (final_pred < 0.5 and outcome == 0)
            accuracies.append(int(correct))
            
            predictions.append(final_pred)
            true_outcomes.append(1 if outcome >= 0.5 else 0)
        
        mean_reward = np.mean(rewards)
        mean_accuracy = np.mean(accuracies)
        
        # Calculate additional metrics
        true_positives = sum(1 for p, t in zip(predictions, true_outcomes) if p >= 0.5 and t == 1)
        false_positives = sum(1 for p, t in zip(predictions, true_outcomes) if p >= 0.5 and t == 0)
        true_negatives = sum(1 for p, t in zip(predictions, true_outcomes) if p < 0.5 and t == 0)
        false_negatives = sum(1 for p, t in zip(predictions, true_outcomes) if p < 0.5 and t == 1)
        
        precision = true_positives / (true_positives + false_positives) if (true_positives + false_positives) > 0 else 0
        recall = true_positives / (true_positives + false_negatives) if (true_positives + false_negatives) > 0 else 0
        f1_score = 2 * precision * recall / (precision + recall) if (precision + recall) > 0 else 0
        
        logger.info(f"Evaluation results:")
        logger.info(f"- Mean reward: {mean_reward:.4f}")
        logger.info(f"- Prediction accuracy: {mean_accuracy:.4f}")
        logger.info(f"- Precision: {precision:.4f}")
        logger.info(f"- Recall: {recall:.4f}")
        logger.info(f"- F1 Score: {f1_score:.4f}")
        
        return {
            'mean_reward': float(mean_reward),
            'accuracy': float(mean_accuracy),
            'precision': float(precision),
            'recall': float(recall),
            'f1_score': float(f1_score)
        }

def main():
    """Main function to run the training pipeline."""
    parser = argparse.ArgumentParser(description="Train a sales conversion prediction model")
    parser.add_argument("--dataset", type=str, required=True,
                      help="Path to the dataset CSV file")
    parser.add_argument("--model_path", type=str, default="models/sales_conversion_model",
                      help="Path to save the trained model")
    parser.add_argument("--timesteps", type=int, default=50000,
                      help="Number of timesteps to train for")
    parser.add_argument("--learning_rate", type=float, default=0.0003,
                      help="Learning rate for training")
    parser.add_argument("--batch_size", type=int, default=64,
                      help="Batch size for training")
    parser.add_argument("--sample_size", type=int, default=None,
                      help="Limit dataset size to save memory (e.g., 10000)")
    parser.add_argument("--evaluate_only", action="store_true",
                      help="Only evaluate an existing model without training")
    parser.add_argument("--num_eval_episodes", type=int, default=50,
                      help="Number of episodes for evaluation")
    parser.add_argument("--use_small_embedding", action="store_true",
                      help="Use reduced embedding dimension to save memory")
    
    args = parser.parse_args()
    
    # Initialize trainer
    trainer = SalesRLTrainer(
        dataset_path=args.dataset,
        model_save_path=args.model_path,
        use_miniembeddings=args.use_small_embedding,
        batch_size=args.batch_size
    )
    
    # Load dataset with optional sample limit
    trainer.load_dataset(sample_size=args.sample_size)
    
    # Train or evaluate
    if not args.evaluate_only:
        trainer.train(
            total_timesteps=args.timesteps,
            learning_rate=args.learning_rate
        )
    
    # Evaluate
    eval_results = trainer.evaluate(num_episodes=args.num_eval_episodes)
    
    # Print evaluation results
    print("\nEvaluation Results:")
    for metric, value in eval_results.items():
        print(f"- {metric}: {value:.4f}")

if __name__ == "__main__":
    main()