Safetensors
qwen2
File size: 1,494 Bytes
3cd9664
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
951599a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
---

license: mit
base_model:
- Qwen/Qwen2.5-3B-Instruct
language:
- zho
- eng
- fra
- spa
- por
- deu
- ita
- rus
- jpn
- kor
- vie
- tha
- ara
---

# DeepRetrieval
## Overview

DeepRetrieval is a novel approach that uses reinforcement learning (RL) to train Large Language Models (LLMs) for query generation without requiring supervised data. Instead of relying on expensive human-annotated or distilled reference queries, DeepRetrieval enables LLMs to learn through direct trial and error, using retrieval metrics as rewards.
## Key Features

- **No Supervision Required**: Eliminates the need for expensive human-annotated or distilled reference queries
- **RL-Based Framework**: Uses reinforcement learning to optimize query generation directly for retrieval performance
- **State-of-the-Art Performance**: Achieves remarkable results across diverse retrieval tasks

Please view our [GitHub page](https://github.com/pat-jj/DeepRetrieval) for instructions.

[DeepRetrieval Paper](arxiv.org/abs/2503.00223)
```

@article{jiang2025deepretrievalhackingrealsearch,

      title={DeepRetrieval: Hacking Real Search Engines and Retrievers with Large Language Models via Reinforcement Learning}, 

      author={Pengcheng Jiang and Jiacheng Lin and Lang Cao and Runchu Tian and SeongKu Kang and Zifeng Wang and Jimeng Sun and Jiawei Han},

      year={2025},

      journal = {arXiv preprint arXiv: 2503.00223},

      url={https://arxiv.org/abs/2503.00223}

  }

```