EurekaTian commited on
Commit
e24801b
·
verified ·
1 Parent(s): 406ab8c

Upload folder using huggingface_hub

Browse files
PixArt-XL-2-512x512.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a1e101f812e1e4d7d4ebe69a897945f7317e3f9073b9a311b48b4fa3af5757c8
3
+ size 2450274612
bert-base-uncased/.gitattributes_download=true ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
2
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.h5 filter=lfs diff=lfs merge=lfs -text
5
+ *.tflite filter=lfs diff=lfs merge=lfs -text
6
+ *.tar.gz filter=lfs diff=lfs merge=lfs -text
7
+ *.ot filter=lfs diff=lfs merge=lfs -text
8
+ *.onnx filter=lfs diff=lfs merge=lfs -text
9
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
10
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
11
+ model.safetensors filter=lfs diff=lfs merge=lfs -text
bert-base-uncased/LICENSE ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright [yyyy] [name of copyright owner]
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
bert-base-uncased/README.md ADDED
@@ -0,0 +1,251 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ tags:
4
+ - exbert
5
+ license: apache-2.0
6
+ datasets:
7
+ - bookcorpus
8
+ - wikipedia
9
+ ---
10
+
11
+ # BERT base model (uncased)
12
+
13
+ Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in
14
+ [this paper](https://arxiv.org/abs/1810.04805) and first released in
15
+ [this repository](https://github.com/google-research/bert). This model is uncased: it does not make a difference
16
+ between english and English.
17
+
18
+ Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by
19
+ the Hugging Face team.
20
+
21
+ ## Model description
22
+
23
+ BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it
24
+ was pretrained on the raw texts only, with no humans labeling them in any way (which is why it can use lots of
25
+ publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it
26
+ was pretrained with two objectives:
27
+
28
+ - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run
29
+ the entire masked sentence through the model and has to predict the masked words. This is different from traditional
30
+ recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like
31
+ GPT which internally masks the future tokens. It allows the model to learn a bidirectional representation of the
32
+ sentence.
33
+ - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes
34
+ they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to
35
+ predict if the two sentences were following each other or not.
36
+
37
+ This way, the model learns an inner representation of the English language that can then be used to extract features
38
+ useful for downstream tasks: if you have a dataset of labeled sentences, for instance, you can train a standard
39
+ classifier using the features produced by the BERT model as inputs.
40
+
41
+ ## Model variations
42
+
43
+ BERT has originally been released in base and large variations, for cased and uncased input text. The uncased models also strips out an accent markers.
44
+ Chinese and multilingual uncased and cased versions followed shortly after.
45
+ Modified preprocessing with whole word masking has replaced subpiece masking in a following work, with the release of two models.
46
+ Other 24 smaller models are released afterward.
47
+
48
+ The detailed release history can be found on the [google-research/bert readme](https://github.com/google-research/bert/blob/master/README.md) on github.
49
+
50
+ | Model | #params | Language |
51
+ |------------------------|--------------------------------|-------|
52
+ | [`bert-base-uncased`](https://huggingface.co/bert-base-uncased) | 110M | English |
53
+ | [`bert-large-uncased`](https://huggingface.co/bert-large-uncased) | 340M | English | sub
54
+ | [`bert-base-cased`](https://huggingface.co/bert-base-cased) | 110M | English |
55
+ | [`bert-large-cased`](https://huggingface.co/bert-large-cased) | 340M | English |
56
+ | [`bert-base-chinese`](https://huggingface.co/bert-base-chinese) | 110M | Chinese |
57
+ | [`bert-base-multilingual-cased`](https://huggingface.co/bert-base-multilingual-cased) | 110M | Multiple |
58
+ | [`bert-large-uncased-whole-word-masking`](https://huggingface.co/bert-large-uncased-whole-word-masking) | 340M | English |
59
+ | [`bert-large-cased-whole-word-masking`](https://huggingface.co/bert-large-cased-whole-word-masking) | 340M | English |
60
+
61
+ ## Intended uses & limitations
62
+
63
+ You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to
64
+ be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=bert) to look for
65
+ fine-tuned versions of a task that interests you.
66
+
67
+ Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)
68
+ to make decisions, such as sequence classification, token classification or question answering. For tasks such as text
69
+ generation you should look at model like GPT2.
70
+
71
+ ### How to use
72
+
73
+ You can use this model directly with a pipeline for masked language modeling:
74
+
75
+ ```python
76
+ >>> from transformers import pipeline
77
+ >>> unmasker = pipeline('fill-mask', model='bert-base-uncased')
78
+ >>> unmasker("Hello I'm a [MASK] model.")
79
+
80
+ [{'sequence': "[CLS] hello i'm a fashion model. [SEP]",
81
+ 'score': 0.1073106899857521,
82
+ 'token': 4827,
83
+ 'token_str': 'fashion'},
84
+ {'sequence': "[CLS] hello i'm a role model. [SEP]",
85
+ 'score': 0.08774490654468536,
86
+ 'token': 2535,
87
+ 'token_str': 'role'},
88
+ {'sequence': "[CLS] hello i'm a new model. [SEP]",
89
+ 'score': 0.05338378623127937,
90
+ 'token': 2047,
91
+ 'token_str': 'new'},
92
+ {'sequence': "[CLS] hello i'm a super model. [SEP]",
93
+ 'score': 0.04667217284440994,
94
+ 'token': 3565,
95
+ 'token_str': 'super'},
96
+ {'sequence': "[CLS] hello i'm a fine model. [SEP]",
97
+ 'score': 0.027095865458250046,
98
+ 'token': 2986,
99
+ 'token_str': 'fine'}]
100
+ ```
101
+
102
+ Here is how to use this model to get the features of a given text in PyTorch:
103
+
104
+ ```python
105
+ from transformers import BertTokenizer, BertModel
106
+ tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
107
+ model = BertModel.from_pretrained("bert-base-uncased")
108
+ text = "Replace me by any text you'd like."
109
+ encoded_input = tokenizer(text, return_tensors='pt')
110
+ output = model(**encoded_input)
111
+ ```
112
+
113
+ and in TensorFlow:
114
+
115
+ ```python
116
+ from transformers import BertTokenizer, TFBertModel
117
+ tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
118
+ model = TFBertModel.from_pretrained("bert-base-uncased")
119
+ text = "Replace me by any text you'd like."
120
+ encoded_input = tokenizer(text, return_tensors='tf')
121
+ output = model(encoded_input)
122
+ ```
123
+
124
+ ### Limitations and bias
125
+
126
+ Even if the training data used for this model could be characterized as fairly neutral, this model can have biased
127
+ predictions:
128
+
129
+ ```python
130
+ >>> from transformers import pipeline
131
+ >>> unmasker = pipeline('fill-mask', model='bert-base-uncased')
132
+ >>> unmasker("The man worked as a [MASK].")
133
+
134
+ [{'sequence': '[CLS] the man worked as a carpenter. [SEP]',
135
+ 'score': 0.09747550636529922,
136
+ 'token': 10533,
137
+ 'token_str': 'carpenter'},
138
+ {'sequence': '[CLS] the man worked as a waiter. [SEP]',
139
+ 'score': 0.0523831807076931,
140
+ 'token': 15610,
141
+ 'token_str': 'waiter'},
142
+ {'sequence': '[CLS] the man worked as a barber. [SEP]',
143
+ 'score': 0.04962705448269844,
144
+ 'token': 13362,
145
+ 'token_str': 'barber'},
146
+ {'sequence': '[CLS] the man worked as a mechanic. [SEP]',
147
+ 'score': 0.03788609802722931,
148
+ 'token': 15893,
149
+ 'token_str': 'mechanic'},
150
+ {'sequence': '[CLS] the man worked as a salesman. [SEP]',
151
+ 'score': 0.037680890411138535,
152
+ 'token': 18968,
153
+ 'token_str': 'salesman'}]
154
+
155
+ >>> unmasker("The woman worked as a [MASK].")
156
+
157
+ [{'sequence': '[CLS] the woman worked as a nurse. [SEP]',
158
+ 'score': 0.21981462836265564,
159
+ 'token': 6821,
160
+ 'token_str': 'nurse'},
161
+ {'sequence': '[CLS] the woman worked as a waitress. [SEP]',
162
+ 'score': 0.1597415804862976,
163
+ 'token': 13877,
164
+ 'token_str': 'waitress'},
165
+ {'sequence': '[CLS] the woman worked as a maid. [SEP]',
166
+ 'score': 0.1154729500412941,
167
+ 'token': 10850,
168
+ 'token_str': 'maid'},
169
+ {'sequence': '[CLS] the woman worked as a prostitute. [SEP]',
170
+ 'score': 0.037968918681144714,
171
+ 'token': 19215,
172
+ 'token_str': 'prostitute'},
173
+ {'sequence': '[CLS] the woman worked as a cook. [SEP]',
174
+ 'score': 0.03042375110089779,
175
+ 'token': 5660,
176
+ 'token_str': 'cook'}]
177
+ ```
178
+
179
+ This bias will also affect all fine-tuned versions of this model.
180
+
181
+ ## Training data
182
+
183
+ The BERT model was pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038
184
+ unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and
185
+ headers).
186
+
187
+ ## Training procedure
188
+
189
+ ### Preprocessing
190
+
191
+ The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are
192
+ then of the form:
193
+
194
+ ```
195
+ [CLS] Sentence A [SEP] Sentence B [SEP]
196
+ ```
197
+
198
+ With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus, and in
199
+ the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a
200
+ consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two
201
+ "sentences" has a combined length of less than 512 tokens.
202
+
203
+ The details of the masking procedure for each sentence are the following:
204
+ - 15% of the tokens are masked.
205
+ - In 80% of the cases, the masked tokens are replaced by `[MASK]`.
206
+ - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
207
+ - In the 10% remaining cases, the masked tokens are left as is.
208
+
209
+ ### Pretraining
210
+
211
+ The model was trained on 4 cloud TPUs in Pod configuration (16 TPU chips total) for one million steps with a batch size
212
+ of 256. The sequence length was limited to 128 tokens for 90% of the steps and 512 for the remaining 10%. The optimizer
213
+ used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01,
214
+ learning rate warmup for 10,000 steps and linear decay of the learning rate after.
215
+
216
+ ## Evaluation results
217
+
218
+ When fine-tuned on downstream tasks, this model achieves the following results:
219
+
220
+ Glue test results:
221
+
222
+ | Task | MNLI-(m/mm) | QQP | QNLI | SST-2 | CoLA | STS-B | MRPC | RTE | Average |
223
+ |:----:|:-----------:|:----:|:----:|:-----:|:----:|:-----:|:----:|:----:|:-------:|
224
+ | | 84.6/83.4 | 71.2 | 90.5 | 93.5 | 52.1 | 85.8 | 88.9 | 66.4 | 79.6 |
225
+
226
+
227
+ ### BibTeX entry and citation info
228
+
229
+ ```bibtex
230
+ @article{DBLP:journals/corr/abs-1810-04805,
231
+ author = {Jacob Devlin and
232
+ Ming{-}Wei Chang and
233
+ Kenton Lee and
234
+ Kristina Toutanova},
235
+ title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language
236
+ Understanding},
237
+ journal = {CoRR},
238
+ volume = {abs/1810.04805},
239
+ year = {2018},
240
+ url = {http://arxiv.org/abs/1810.04805},
241
+ archivePrefix = {arXiv},
242
+ eprint = {1810.04805},
243
+ timestamp = {Tue, 30 Oct 2018 20:39:56 +0100},
244
+ biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib},
245
+ bibsource = {dblp computer science bibliography, https://dblp.org}
246
+ }
247
+ ```
248
+
249
+ <a href="https://huggingface.co/exbert/?model=bert-base-uncased">
250
+ <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png">
251
+ </a>
bert-base-uncased/config.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertForMaskedLM"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "gradient_checkpointing": false,
7
+ "hidden_act": "gelu",
8
+ "hidden_dropout_prob": 0.1,
9
+ "hidden_size": 768,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 3072,
12
+ "layer_norm_eps": 1e-12,
13
+ "max_position_embeddings": 512,
14
+ "model_type": "bert",
15
+ "num_attention_heads": 12,
16
+ "num_hidden_layers": 12,
17
+ "pad_token_id": 0,
18
+ "position_embedding_type": "absolute",
19
+ "transformers_version": "4.6.0.dev0",
20
+ "type_vocab_size": 2,
21
+ "use_cache": true,
22
+ "vocab_size": 30522
23
+ }
bert-base-uncased/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:68d45e234eb4a928074dfd868cead0219ab85354cc53d20e772753c6bb9169d3
3
+ size 440449768
bert-base-uncased/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:097417381d6c7230bd9e3557456d726de6e83245ec8b24f529f60198a67b203a
3
+ size 440473133
bert-base-uncased/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
bert-base-uncased/tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"do_lower_case": true, "model_max_length": 512}
bert-base-uncased/vocab.txt ADDED
The diff for this file is too large to render. See raw diff
 
blip2_pretrained_flant5xxl.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4b3839ea6c617f315ead9bf4036bbb0f0cf6bf62695ecfc14968ea626af03a29
3
+ size 433481467
eva_vit_g.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:99d2bb36c6b52c94fe6e2e12373afb27de57ae81378c3d8c53bf0e83b0f4275f
3
+ size 2025249237
model.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:51c2f8f52057c65bed6ba35c95342a8f169098bb841ba2eb104de8f7aa6ebffa
3
+ size 26431336381
sd-vae-ft-ema/config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_class_name": "AutoencoderKL",
3
+ "_diffusers_version": "0.4.2",
4
+ "act_fn": "silu",
5
+ "block_out_channels": [
6
+ 128,
7
+ 256,
8
+ 512,
9
+ 512
10
+ ],
11
+ "down_block_types": [
12
+ "DownEncoderBlock2D",
13
+ "DownEncoderBlock2D",
14
+ "DownEncoderBlock2D",
15
+ "DownEncoderBlock2D"
16
+ ],
17
+ "in_channels": 3,
18
+ "latent_channels": 4,
19
+ "layers_per_block": 2,
20
+ "norm_num_groups": 32,
21
+ "out_channels": 3,
22
+ "sample_size": 256,
23
+ "up_block_types": [
24
+ "UpDecoderBlock2D",
25
+ "UpDecoderBlock2D",
26
+ "UpDecoderBlock2D",
27
+ "UpDecoderBlock2D"
28
+ ]
29
+ }
sd-vae-ft-ema/diffusion_pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7c98ebcd7ca5cb69d47b2ae287feba0695689fbf2c8fead2fab05fd3e0c28303
3
+ size 334707217
t5-v1_1-xxl/config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "google/t5-v1_1-xxl",
3
+ "architectures": [
4
+ "T5EncoderModel"
5
+ ],
6
+ "d_ff": 10240,
7
+ "d_kv": 64,
8
+ "d_model": 4096,
9
+ "decoder_start_token_id": 0,
10
+ "dense_act_fn": "gelu_new",
11
+ "dropout_rate": 0.1,
12
+ "eos_token_id": 1,
13
+ "feed_forward_proj": "gated-gelu",
14
+ "initializer_factor": 1.0,
15
+ "is_encoder_decoder": true,
16
+ "is_gated_act": true,
17
+ "layer_norm_epsilon": 1e-06,
18
+ "model_type": "t5",
19
+ "num_decoder_layers": 24,
20
+ "num_heads": 64,
21
+ "num_layers": 24,
22
+ "output_past": true,
23
+ "pad_token_id": 0,
24
+ "relative_attention_max_distance": 128,
25
+ "relative_attention_num_buckets": 32,
26
+ "tie_word_embeddings": false,
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.21.1",
29
+ "use_cache": true,
30
+ "vocab_size": 32128
31
+ }
t5-v1_1-xxl/pytorch_model-00001-of-00002.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2f71ad0624095dae788b1023081dda1b4040bd24f7244a5b5b46eebc09825839
3
+ size 9452285635
t5-v1_1-xxl/pytorch_model-00002-of-00002.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4f68f80678299ac59f69b3550ebd47b966571920d8f9e71f42ab61fabaaed868
3
+ size 9597031749
t5-v1_1-xxl/pytorch_model.bin.index.json ADDED
@@ -0,0 +1,227 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 19575627776
4
+ },
5
+ "weight_map": {
6
+ "encoder.block.0.layer.0.SelfAttention.k.weight": "pytorch_model-00001-of-00002.bin",
7
+ "encoder.block.0.layer.0.SelfAttention.o.weight": "pytorch_model-00001-of-00002.bin",
8
+ "encoder.block.0.layer.0.SelfAttention.q.weight": "pytorch_model-00001-of-00002.bin",
9
+ "encoder.block.0.layer.0.SelfAttention.relative_attention_bias.weight": "pytorch_model-00001-of-00002.bin",
10
+ "encoder.block.0.layer.0.SelfAttention.v.weight": "pytorch_model-00001-of-00002.bin",
11
+ "encoder.block.0.layer.0.layer_norm.weight": "pytorch_model-00001-of-00002.bin",
12
+ "encoder.block.0.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00001-of-00002.bin",
13
+ "encoder.block.0.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00001-of-00002.bin",
14
+ "encoder.block.0.layer.1.DenseReluDense.wo.weight": "pytorch_model-00001-of-00002.bin",
15
+ "encoder.block.0.layer.1.layer_norm.weight": "pytorch_model-00001-of-00002.bin",
16
+ "encoder.block.1.layer.0.SelfAttention.k.weight": "pytorch_model-00001-of-00002.bin",
17
+ "encoder.block.1.layer.0.SelfAttention.o.weight": "pytorch_model-00001-of-00002.bin",
18
+ "encoder.block.1.layer.0.SelfAttention.q.weight": "pytorch_model-00001-of-00002.bin",
19
+ "encoder.block.1.layer.0.SelfAttention.v.weight": "pytorch_model-00001-of-00002.bin",
20
+ "encoder.block.1.layer.0.layer_norm.weight": "pytorch_model-00001-of-00002.bin",
21
+ "encoder.block.1.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00001-of-00002.bin",
22
+ "encoder.block.1.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00001-of-00002.bin",
23
+ "encoder.block.1.layer.1.DenseReluDense.wo.weight": "pytorch_model-00001-of-00002.bin",
24
+ "encoder.block.1.layer.1.layer_norm.weight": "pytorch_model-00001-of-00002.bin",
25
+ "encoder.block.10.layer.0.SelfAttention.k.weight": "pytorch_model-00001-of-00002.bin",
26
+ "encoder.block.10.layer.0.SelfAttention.o.weight": "pytorch_model-00001-of-00002.bin",
27
+ "encoder.block.10.layer.0.SelfAttention.q.weight": "pytorch_model-00001-of-00002.bin",
28
+ "encoder.block.10.layer.0.SelfAttention.v.weight": "pytorch_model-00001-of-00002.bin",
29
+ "encoder.block.10.layer.0.layer_norm.weight": "pytorch_model-00001-of-00002.bin",
30
+ "encoder.block.10.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00001-of-00002.bin",
31
+ "encoder.block.10.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00001-of-00002.bin",
32
+ "encoder.block.10.layer.1.DenseReluDense.wo.weight": "pytorch_model-00001-of-00002.bin",
33
+ "encoder.block.10.layer.1.layer_norm.weight": "pytorch_model-00001-of-00002.bin",
34
+ "encoder.block.11.layer.0.SelfAttention.k.weight": "pytorch_model-00001-of-00002.bin",
35
+ "encoder.block.11.layer.0.SelfAttention.o.weight": "pytorch_model-00001-of-00002.bin",
36
+ "encoder.block.11.layer.0.SelfAttention.q.weight": "pytorch_model-00001-of-00002.bin",
37
+ "encoder.block.11.layer.0.SelfAttention.v.weight": "pytorch_model-00001-of-00002.bin",
38
+ "encoder.block.11.layer.0.layer_norm.weight": "pytorch_model-00001-of-00002.bin",
39
+ "encoder.block.11.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00001-of-00002.bin",
40
+ "encoder.block.11.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00002-of-00002.bin",
41
+ "encoder.block.11.layer.1.DenseReluDense.wo.weight": "pytorch_model-00002-of-00002.bin",
42
+ "encoder.block.11.layer.1.layer_norm.weight": "pytorch_model-00002-of-00002.bin",
43
+ "encoder.block.12.layer.0.SelfAttention.k.weight": "pytorch_model-00002-of-00002.bin",
44
+ "encoder.block.12.layer.0.SelfAttention.o.weight": "pytorch_model-00002-of-00002.bin",
45
+ "encoder.block.12.layer.0.SelfAttention.q.weight": "pytorch_model-00002-of-00002.bin",
46
+ "encoder.block.12.layer.0.SelfAttention.v.weight": "pytorch_model-00002-of-00002.bin",
47
+ "encoder.block.12.layer.0.layer_norm.weight": "pytorch_model-00002-of-00002.bin",
48
+ "encoder.block.12.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00002-of-00002.bin",
49
+ "encoder.block.12.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00002-of-00002.bin",
50
+ "encoder.block.12.layer.1.DenseReluDense.wo.weight": "pytorch_model-00002-of-00002.bin",
51
+ "encoder.block.12.layer.1.layer_norm.weight": "pytorch_model-00002-of-00002.bin",
52
+ "encoder.block.13.layer.0.SelfAttention.k.weight": "pytorch_model-00002-of-00002.bin",
53
+ "encoder.block.13.layer.0.SelfAttention.o.weight": "pytorch_model-00002-of-00002.bin",
54
+ "encoder.block.13.layer.0.SelfAttention.q.weight": "pytorch_model-00002-of-00002.bin",
55
+ "encoder.block.13.layer.0.SelfAttention.v.weight": "pytorch_model-00002-of-00002.bin",
56
+ "encoder.block.13.layer.0.layer_norm.weight": "pytorch_model-00002-of-00002.bin",
57
+ "encoder.block.13.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00002-of-00002.bin",
58
+ "encoder.block.13.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00002-of-00002.bin",
59
+ "encoder.block.13.layer.1.DenseReluDense.wo.weight": "pytorch_model-00002-of-00002.bin",
60
+ "encoder.block.13.layer.1.layer_norm.weight": "pytorch_model-00002-of-00002.bin",
61
+ "encoder.block.14.layer.0.SelfAttention.k.weight": "pytorch_model-00002-of-00002.bin",
62
+ "encoder.block.14.layer.0.SelfAttention.o.weight": "pytorch_model-00002-of-00002.bin",
63
+ "encoder.block.14.layer.0.SelfAttention.q.weight": "pytorch_model-00002-of-00002.bin",
64
+ "encoder.block.14.layer.0.SelfAttention.v.weight": "pytorch_model-00002-of-00002.bin",
65
+ "encoder.block.14.layer.0.layer_norm.weight": "pytorch_model-00002-of-00002.bin",
66
+ "encoder.block.14.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00002-of-00002.bin",
67
+ "encoder.block.14.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00002-of-00002.bin",
68
+ "encoder.block.14.layer.1.DenseReluDense.wo.weight": "pytorch_model-00002-of-00002.bin",
69
+ "encoder.block.14.layer.1.layer_norm.weight": "pytorch_model-00002-of-00002.bin",
70
+ "encoder.block.15.layer.0.SelfAttention.k.weight": "pytorch_model-00002-of-00002.bin",
71
+ "encoder.block.15.layer.0.SelfAttention.o.weight": "pytorch_model-00002-of-00002.bin",
72
+ "encoder.block.15.layer.0.SelfAttention.q.weight": "pytorch_model-00002-of-00002.bin",
73
+ "encoder.block.15.layer.0.SelfAttention.v.weight": "pytorch_model-00002-of-00002.bin",
74
+ "encoder.block.15.layer.0.layer_norm.weight": "pytorch_model-00002-of-00002.bin",
75
+ "encoder.block.15.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00002-of-00002.bin",
76
+ "encoder.block.15.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00002-of-00002.bin",
77
+ "encoder.block.15.layer.1.DenseReluDense.wo.weight": "pytorch_model-00002-of-00002.bin",
78
+ "encoder.block.15.layer.1.layer_norm.weight": "pytorch_model-00002-of-00002.bin",
79
+ "encoder.block.16.layer.0.SelfAttention.k.weight": "pytorch_model-00002-of-00002.bin",
80
+ "encoder.block.16.layer.0.SelfAttention.o.weight": "pytorch_model-00002-of-00002.bin",
81
+ "encoder.block.16.layer.0.SelfAttention.q.weight": "pytorch_model-00002-of-00002.bin",
82
+ "encoder.block.16.layer.0.SelfAttention.v.weight": "pytorch_model-00002-of-00002.bin",
83
+ "encoder.block.16.layer.0.layer_norm.weight": "pytorch_model-00002-of-00002.bin",
84
+ "encoder.block.16.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00002-of-00002.bin",
85
+ "encoder.block.16.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00002-of-00002.bin",
86
+ "encoder.block.16.layer.1.DenseReluDense.wo.weight": "pytorch_model-00002-of-00002.bin",
87
+ "encoder.block.16.layer.1.layer_norm.weight": "pytorch_model-00002-of-00002.bin",
88
+ "encoder.block.17.layer.0.SelfAttention.k.weight": "pytorch_model-00002-of-00002.bin",
89
+ "encoder.block.17.layer.0.SelfAttention.o.weight": "pytorch_model-00002-of-00002.bin",
90
+ "encoder.block.17.layer.0.SelfAttention.q.weight": "pytorch_model-00002-of-00002.bin",
91
+ "encoder.block.17.layer.0.SelfAttention.v.weight": "pytorch_model-00002-of-00002.bin",
92
+ "encoder.block.17.layer.0.layer_norm.weight": "pytorch_model-00002-of-00002.bin",
93
+ "encoder.block.17.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00002-of-00002.bin",
94
+ "encoder.block.17.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00002-of-00002.bin",
95
+ "encoder.block.17.layer.1.DenseReluDense.wo.weight": "pytorch_model-00002-of-00002.bin",
96
+ "encoder.block.17.layer.1.layer_norm.weight": "pytorch_model-00002-of-00002.bin",
97
+ "encoder.block.18.layer.0.SelfAttention.k.weight": "pytorch_model-00002-of-00002.bin",
98
+ "encoder.block.18.layer.0.SelfAttention.o.weight": "pytorch_model-00002-of-00002.bin",
99
+ "encoder.block.18.layer.0.SelfAttention.q.weight": "pytorch_model-00002-of-00002.bin",
100
+ "encoder.block.18.layer.0.SelfAttention.v.weight": "pytorch_model-00002-of-00002.bin",
101
+ "encoder.block.18.layer.0.layer_norm.weight": "pytorch_model-00002-of-00002.bin",
102
+ "encoder.block.18.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00002-of-00002.bin",
103
+ "encoder.block.18.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00002-of-00002.bin",
104
+ "encoder.block.18.layer.1.DenseReluDense.wo.weight": "pytorch_model-00002-of-00002.bin",
105
+ "encoder.block.18.layer.1.layer_norm.weight": "pytorch_model-00002-of-00002.bin",
106
+ "encoder.block.19.layer.0.SelfAttention.k.weight": "pytorch_model-00002-of-00002.bin",
107
+ "encoder.block.19.layer.0.SelfAttention.o.weight": "pytorch_model-00002-of-00002.bin",
108
+ "encoder.block.19.layer.0.SelfAttention.q.weight": "pytorch_model-00002-of-00002.bin",
109
+ "encoder.block.19.layer.0.SelfAttention.v.weight": "pytorch_model-00002-of-00002.bin",
110
+ "encoder.block.19.layer.0.layer_norm.weight": "pytorch_model-00002-of-00002.bin",
111
+ "encoder.block.19.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00002-of-00002.bin",
112
+ "encoder.block.19.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00002-of-00002.bin",
113
+ "encoder.block.19.layer.1.DenseReluDense.wo.weight": "pytorch_model-00002-of-00002.bin",
114
+ "encoder.block.19.layer.1.layer_norm.weight": "pytorch_model-00002-of-00002.bin",
115
+ "encoder.block.2.layer.0.SelfAttention.k.weight": "pytorch_model-00001-of-00002.bin",
116
+ "encoder.block.2.layer.0.SelfAttention.o.weight": "pytorch_model-00001-of-00002.bin",
117
+ "encoder.block.2.layer.0.SelfAttention.q.weight": "pytorch_model-00001-of-00002.bin",
118
+ "encoder.block.2.layer.0.SelfAttention.v.weight": "pytorch_model-00001-of-00002.bin",
119
+ "encoder.block.2.layer.0.layer_norm.weight": "pytorch_model-00001-of-00002.bin",
120
+ "encoder.block.2.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00001-of-00002.bin",
121
+ "encoder.block.2.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00001-of-00002.bin",
122
+ "encoder.block.2.layer.1.DenseReluDense.wo.weight": "pytorch_model-00001-of-00002.bin",
123
+ "encoder.block.2.layer.1.layer_norm.weight": "pytorch_model-00001-of-00002.bin",
124
+ "encoder.block.20.layer.0.SelfAttention.k.weight": "pytorch_model-00002-of-00002.bin",
125
+ "encoder.block.20.layer.0.SelfAttention.o.weight": "pytorch_model-00002-of-00002.bin",
126
+ "encoder.block.20.layer.0.SelfAttention.q.weight": "pytorch_model-00002-of-00002.bin",
127
+ "encoder.block.20.layer.0.SelfAttention.v.weight": "pytorch_model-00002-of-00002.bin",
128
+ "encoder.block.20.layer.0.layer_norm.weight": "pytorch_model-00002-of-00002.bin",
129
+ "encoder.block.20.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00002-of-00002.bin",
130
+ "encoder.block.20.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00002-of-00002.bin",
131
+ "encoder.block.20.layer.1.DenseReluDense.wo.weight": "pytorch_model-00002-of-00002.bin",
132
+ "encoder.block.20.layer.1.layer_norm.weight": "pytorch_model-00002-of-00002.bin",
133
+ "encoder.block.21.layer.0.SelfAttention.k.weight": "pytorch_model-00002-of-00002.bin",
134
+ "encoder.block.21.layer.0.SelfAttention.o.weight": "pytorch_model-00002-of-00002.bin",
135
+ "encoder.block.21.layer.0.SelfAttention.q.weight": "pytorch_model-00002-of-00002.bin",
136
+ "encoder.block.21.layer.0.SelfAttention.v.weight": "pytorch_model-00002-of-00002.bin",
137
+ "encoder.block.21.layer.0.layer_norm.weight": "pytorch_model-00002-of-00002.bin",
138
+ "encoder.block.21.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00002-of-00002.bin",
139
+ "encoder.block.21.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00002-of-00002.bin",
140
+ "encoder.block.21.layer.1.DenseReluDense.wo.weight": "pytorch_model-00002-of-00002.bin",
141
+ "encoder.block.21.layer.1.layer_norm.weight": "pytorch_model-00002-of-00002.bin",
142
+ "encoder.block.22.layer.0.SelfAttention.k.weight": "pytorch_model-00002-of-00002.bin",
143
+ "encoder.block.22.layer.0.SelfAttention.o.weight": "pytorch_model-00002-of-00002.bin",
144
+ "encoder.block.22.layer.0.SelfAttention.q.weight": "pytorch_model-00002-of-00002.bin",
145
+ "encoder.block.22.layer.0.SelfAttention.v.weight": "pytorch_model-00002-of-00002.bin",
146
+ "encoder.block.22.layer.0.layer_norm.weight": "pytorch_model-00002-of-00002.bin",
147
+ "encoder.block.22.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00002-of-00002.bin",
148
+ "encoder.block.22.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00002-of-00002.bin",
149
+ "encoder.block.22.layer.1.DenseReluDense.wo.weight": "pytorch_model-00002-of-00002.bin",
150
+ "encoder.block.22.layer.1.layer_norm.weight": "pytorch_model-00002-of-00002.bin",
151
+ "encoder.block.23.layer.0.SelfAttention.k.weight": "pytorch_model-00002-of-00002.bin",
152
+ "encoder.block.23.layer.0.SelfAttention.o.weight": "pytorch_model-00002-of-00002.bin",
153
+ "encoder.block.23.layer.0.SelfAttention.q.weight": "pytorch_model-00002-of-00002.bin",
154
+ "encoder.block.23.layer.0.SelfAttention.v.weight": "pytorch_model-00002-of-00002.bin",
155
+ "encoder.block.23.layer.0.layer_norm.weight": "pytorch_model-00002-of-00002.bin",
156
+ "encoder.block.23.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00002-of-00002.bin",
157
+ "encoder.block.23.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00002-of-00002.bin",
158
+ "encoder.block.23.layer.1.DenseReluDense.wo.weight": "pytorch_model-00002-of-00002.bin",
159
+ "encoder.block.23.layer.1.layer_norm.weight": "pytorch_model-00002-of-00002.bin",
160
+ "encoder.block.3.layer.0.SelfAttention.k.weight": "pytorch_model-00001-of-00002.bin",
161
+ "encoder.block.3.layer.0.SelfAttention.o.weight": "pytorch_model-00001-of-00002.bin",
162
+ "encoder.block.3.layer.0.SelfAttention.q.weight": "pytorch_model-00001-of-00002.bin",
163
+ "encoder.block.3.layer.0.SelfAttention.v.weight": "pytorch_model-00001-of-00002.bin",
164
+ "encoder.block.3.layer.0.layer_norm.weight": "pytorch_model-00001-of-00002.bin",
165
+ "encoder.block.3.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00001-of-00002.bin",
166
+ "encoder.block.3.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00001-of-00002.bin",
167
+ "encoder.block.3.layer.1.DenseReluDense.wo.weight": "pytorch_model-00001-of-00002.bin",
168
+ "encoder.block.3.layer.1.layer_norm.weight": "pytorch_model-00001-of-00002.bin",
169
+ "encoder.block.4.layer.0.SelfAttention.k.weight": "pytorch_model-00001-of-00002.bin",
170
+ "encoder.block.4.layer.0.SelfAttention.o.weight": "pytorch_model-00001-of-00002.bin",
171
+ "encoder.block.4.layer.0.SelfAttention.q.weight": "pytorch_model-00001-of-00002.bin",
172
+ "encoder.block.4.layer.0.SelfAttention.v.weight": "pytorch_model-00001-of-00002.bin",
173
+ "encoder.block.4.layer.0.layer_norm.weight": "pytorch_model-00001-of-00002.bin",
174
+ "encoder.block.4.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00001-of-00002.bin",
175
+ "encoder.block.4.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00001-of-00002.bin",
176
+ "encoder.block.4.layer.1.DenseReluDense.wo.weight": "pytorch_model-00001-of-00002.bin",
177
+ "encoder.block.4.layer.1.layer_norm.weight": "pytorch_model-00001-of-00002.bin",
178
+ "encoder.block.5.layer.0.SelfAttention.k.weight": "pytorch_model-00001-of-00002.bin",
179
+ "encoder.block.5.layer.0.SelfAttention.o.weight": "pytorch_model-00001-of-00002.bin",
180
+ "encoder.block.5.layer.0.SelfAttention.q.weight": "pytorch_model-00001-of-00002.bin",
181
+ "encoder.block.5.layer.0.SelfAttention.v.weight": "pytorch_model-00001-of-00002.bin",
182
+ "encoder.block.5.layer.0.layer_norm.weight": "pytorch_model-00001-of-00002.bin",
183
+ "encoder.block.5.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00001-of-00002.bin",
184
+ "encoder.block.5.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00001-of-00002.bin",
185
+ "encoder.block.5.layer.1.DenseReluDense.wo.weight": "pytorch_model-00001-of-00002.bin",
186
+ "encoder.block.5.layer.1.layer_norm.weight": "pytorch_model-00001-of-00002.bin",
187
+ "encoder.block.6.layer.0.SelfAttention.k.weight": "pytorch_model-00001-of-00002.bin",
188
+ "encoder.block.6.layer.0.SelfAttention.o.weight": "pytorch_model-00001-of-00002.bin",
189
+ "encoder.block.6.layer.0.SelfAttention.q.weight": "pytorch_model-00001-of-00002.bin",
190
+ "encoder.block.6.layer.0.SelfAttention.v.weight": "pytorch_model-00001-of-00002.bin",
191
+ "encoder.block.6.layer.0.layer_norm.weight": "pytorch_model-00001-of-00002.bin",
192
+ "encoder.block.6.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00001-of-00002.bin",
193
+ "encoder.block.6.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00001-of-00002.bin",
194
+ "encoder.block.6.layer.1.DenseReluDense.wo.weight": "pytorch_model-00001-of-00002.bin",
195
+ "encoder.block.6.layer.1.layer_norm.weight": "pytorch_model-00001-of-00002.bin",
196
+ "encoder.block.7.layer.0.SelfAttention.k.weight": "pytorch_model-00001-of-00002.bin",
197
+ "encoder.block.7.layer.0.SelfAttention.o.weight": "pytorch_model-00001-of-00002.bin",
198
+ "encoder.block.7.layer.0.SelfAttention.q.weight": "pytorch_model-00001-of-00002.bin",
199
+ "encoder.block.7.layer.0.SelfAttention.v.weight": "pytorch_model-00001-of-00002.bin",
200
+ "encoder.block.7.layer.0.layer_norm.weight": "pytorch_model-00001-of-00002.bin",
201
+ "encoder.block.7.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00001-of-00002.bin",
202
+ "encoder.block.7.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00001-of-00002.bin",
203
+ "encoder.block.7.layer.1.DenseReluDense.wo.weight": "pytorch_model-00001-of-00002.bin",
204
+ "encoder.block.7.layer.1.layer_norm.weight": "pytorch_model-00001-of-00002.bin",
205
+ "encoder.block.8.layer.0.SelfAttention.k.weight": "pytorch_model-00001-of-00002.bin",
206
+ "encoder.block.8.layer.0.SelfAttention.o.weight": "pytorch_model-00001-of-00002.bin",
207
+ "encoder.block.8.layer.0.SelfAttention.q.weight": "pytorch_model-00001-of-00002.bin",
208
+ "encoder.block.8.layer.0.SelfAttention.v.weight": "pytorch_model-00001-of-00002.bin",
209
+ "encoder.block.8.layer.0.layer_norm.weight": "pytorch_model-00001-of-00002.bin",
210
+ "encoder.block.8.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00001-of-00002.bin",
211
+ "encoder.block.8.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00001-of-00002.bin",
212
+ "encoder.block.8.layer.1.DenseReluDense.wo.weight": "pytorch_model-00001-of-00002.bin",
213
+ "encoder.block.8.layer.1.layer_norm.weight": "pytorch_model-00001-of-00002.bin",
214
+ "encoder.block.9.layer.0.SelfAttention.k.weight": "pytorch_model-00001-of-00002.bin",
215
+ "encoder.block.9.layer.0.SelfAttention.o.weight": "pytorch_model-00001-of-00002.bin",
216
+ "encoder.block.9.layer.0.SelfAttention.q.weight": "pytorch_model-00001-of-00002.bin",
217
+ "encoder.block.9.layer.0.SelfAttention.v.weight": "pytorch_model-00001-of-00002.bin",
218
+ "encoder.block.9.layer.0.layer_norm.weight": "pytorch_model-00001-of-00002.bin",
219
+ "encoder.block.9.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00001-of-00002.bin",
220
+ "encoder.block.9.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00001-of-00002.bin",
221
+ "encoder.block.9.layer.1.DenseReluDense.wo.weight": "pytorch_model-00001-of-00002.bin",
222
+ "encoder.block.9.layer.1.layer_norm.weight": "pytorch_model-00001-of-00002.bin",
223
+ "encoder.embed_tokens.weight": "pytorch_model-00001-of-00002.bin",
224
+ "encoder.final_layer_norm.weight": "pytorch_model-00002-of-00002.bin",
225
+ "shared.weight": "pytorch_model-00001-of-00002.bin"
226
+ }
227
+ }
t5-v1_1-xxl/special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>", "additional_special_tokens": ["<extra_id_0>", "<extra_id_1>", "<extra_id_2>", "<extra_id_3>", "<extra_id_4>", "<extra_id_5>", "<extra_id_6>", "<extra_id_7>", "<extra_id_8>", "<extra_id_9>", "<extra_id_10>", "<extra_id_11>", "<extra_id_12>", "<extra_id_13>", "<extra_id_14>", "<extra_id_15>", "<extra_id_16>", "<extra_id_17>", "<extra_id_18>", "<extra_id_19>", "<extra_id_20>", "<extra_id_21>", "<extra_id_22>", "<extra_id_23>", "<extra_id_24>", "<extra_id_25>", "<extra_id_26>", "<extra_id_27>", "<extra_id_28>", "<extra_id_29>", "<extra_id_30>", "<extra_id_31>", "<extra_id_32>", "<extra_id_33>", "<extra_id_34>", "<extra_id_35>", "<extra_id_36>", "<extra_id_37>", "<extra_id_38>", "<extra_id_39>", "<extra_id_40>", "<extra_id_41>", "<extra_id_42>", "<extra_id_43>", "<extra_id_44>", "<extra_id_45>", "<extra_id_46>", "<extra_id_47>", "<extra_id_48>", "<extra_id_49>", "<extra_id_50>", "<extra_id_51>", "<extra_id_52>", "<extra_id_53>", "<extra_id_54>", "<extra_id_55>", "<extra_id_56>", "<extra_id_57>", "<extra_id_58>", "<extra_id_59>", "<extra_id_60>", "<extra_id_61>", "<extra_id_62>", "<extra_id_63>", "<extra_id_64>", "<extra_id_65>", "<extra_id_66>", "<extra_id_67>", "<extra_id_68>", "<extra_id_69>", "<extra_id_70>", "<extra_id_71>", "<extra_id_72>", "<extra_id_73>", "<extra_id_74>", "<extra_id_75>", "<extra_id_76>", "<extra_id_77>", "<extra_id_78>", "<extra_id_79>", "<extra_id_80>", "<extra_id_81>", "<extra_id_82>", "<extra_id_83>", "<extra_id_84>", "<extra_id_85>", "<extra_id_86>", "<extra_id_87>", "<extra_id_88>", "<extra_id_89>", "<extra_id_90>", "<extra_id_91>", "<extra_id_92>", "<extra_id_93>", "<extra_id_94>", "<extra_id_95>", "<extra_id_96>", "<extra_id_97>", "<extra_id_98>", "<extra_id_99>"]}
t5-v1_1-xxl/spiece.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d60acb128cf7b7f2536e8f38a5b18a05535c9e14c7a355904270e15b0945ea86
3
+ size 791656
t5-v1_1-xxl/tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>", "extra_ids": 100, "additional_special_tokens": ["<extra_id_0>", "<extra_id_1>", "<extra_id_2>", "<extra_id_3>", "<extra_id_4>", "<extra_id_5>", "<extra_id_6>", "<extra_id_7>", "<extra_id_8>", "<extra_id_9>", "<extra_id_10>", "<extra_id_11>", "<extra_id_12>", "<extra_id_13>", "<extra_id_14>", "<extra_id_15>", "<extra_id_16>", "<extra_id_17>", "<extra_id_18>", "<extra_id_19>", "<extra_id_20>", "<extra_id_21>", "<extra_id_22>", "<extra_id_23>", "<extra_id_24>", "<extra_id_25>", "<extra_id_26>", "<extra_id_27>", "<extra_id_28>", "<extra_id_29>", "<extra_id_30>", "<extra_id_31>", "<extra_id_32>", "<extra_id_33>", "<extra_id_34>", "<extra_id_35>", "<extra_id_36>", "<extra_id_37>", "<extra_id_38>", "<extra_id_39>", "<extra_id_40>", "<extra_id_41>", "<extra_id_42>", "<extra_id_43>", "<extra_id_44>", "<extra_id_45>", "<extra_id_46>", "<extra_id_47>", "<extra_id_48>", "<extra_id_49>", "<extra_id_50>", "<extra_id_51>", "<extra_id_52>", "<extra_id_53>", "<extra_id_54>", "<extra_id_55>", "<extra_id_56>", "<extra_id_57>", "<extra_id_58>", "<extra_id_59>", "<extra_id_60>", "<extra_id_61>", "<extra_id_62>", "<extra_id_63>", "<extra_id_64>", "<extra_id_65>", "<extra_id_66>", "<extra_id_67>", "<extra_id_68>", "<extra_id_69>", "<extra_id_70>", "<extra_id_71>", "<extra_id_72>", "<extra_id_73>", "<extra_id_74>", "<extra_id_75>", "<extra_id_76>", "<extra_id_77>", "<extra_id_78>", "<extra_id_79>", "<extra_id_80>", "<extra_id_81>", "<extra_id_82>", "<extra_id_83>", "<extra_id_84>", "<extra_id_85>", "<extra_id_86>", "<extra_id_87>", "<extra_id_88>", "<extra_id_89>", "<extra_id_90>", "<extra_id_91>", "<extra_id_92>", "<extra_id_93>", "<extra_id_94>", "<extra_id_95>", "<extra_id_96>", "<extra_id_97>", "<extra_id_98>", "<extra_id_99>"], "model_max_length": 512, "name_or_path": "t5-small"}