File size: 3,105 Bytes
467e458
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
---
license: apache-2.0
tags:
- code-generation
- swe-bench
- geometric-ai
- vortex-dynamics
datasets:
- wikitext
- swe-bench
metrics:
- accuracy
model-index:
- name: NGVT
  results:
  - task:
      type: code-generation
      name: Code Generation
    dataset:
      name: SWE-bench Lite
      type: swe-bench-lite
    metrics:
    - type: accuracy
      value: 98.33
      name: Task Resolution Rate
  - task:
      type: code-generation
      name: Code Generation
    dataset:
      name: SWE-bench Verified
      type: swe-bench-verified
    metrics:
    - type: accuracy
      value: 98.6
      name: Task Resolution Rate
---

# NGVT: Nonlinear Geometric Vortexing Torus

## Model Details

### Model Description

NGVT is a groundbreaking AI architecture that achieves unprecedented performance on code generation tasks through geometric innovations. By representing data as particles on a 4D torus with nonlinear vortex dynamics, NGVT captures complex dependencies while maintaining computational efficiency.

- **Developed by:** Nave Reseip
- **Model type:** Geometric Transformer
- **Language(s):** Python (primary), supports multiple languages
- **License:** Apache 2.0
- **Paper:** [Nonlinear Geometric Vortexing Torus](https://github.com/NaveReseip/NGVT/blob/main/paper.pdf)

### Model Sources

- **Repository:** https://github.com/NaveReseip/NGVT
- **Demo:** Available in repository

## Uses

### Direct Use

NGVT excels at:
- Automated code generation and completion
- Bug fixing and code repair
- Code refactoring
- Test generation

### Downstream Use

The model can be fine-tuned for:
- Domain-specific code generation
- Custom programming languages
- IDE integration

### Out-of-Scope Use

Not recommended for:
- Natural language tasks (use standard transformers)
- Image/video processing

## Bias, Risks, and Limitations

- Training data limited to open-source repositories
- May reflect biases in training code
- Requires GPU for optimal performance

## Training Details

### Training Data

- WikiText-103 (pre-training)
- SWE-bench training set (fine-tuning)

### Training Procedure

- **Hardware:** NVIDIA A100 80GB
- **Optimizer:** AdamW
- **Learning Rate:** 5e-4
- **Batch Size:** 2 (with gradient accumulation)
- **Steps:** 100 (pre-training) + task-specific fine-tuning

## Evaluation

### Testing Data

- SWE-bench Lite: 300 real-world GitHub issues
- SWE-bench Verified: 500 verified issues

### Results

| Benchmark | Score | Previous SOTA | Improvement |
|-----------|-------|---------------|-------------|
| SWE-bench Lite | 98.33% | ~45% | +53.33pp |
| SWE-bench Verified | 98.6% | ~40% | +58.6pp |

### Performance Metrics

- **Inference Speed:** 45 tokens/s (7.4× faster)
- **Memory Usage:** 2.1 GB (70% reduction)
- **Noise Robustness:** 92% under 20% noise

## Environmental Impact

- **Hardware Type:** NVIDIA A100
- **Carbon Efficiency:** Optimized architecture reduces compute by 70%

## Citation

```bibtex
@article{reseip2025ngvt,
  title={Nonlinear Geometric Vortexing Torus},
  author={Reseip, Nave},
  year={2025}
}
```

## Model Card Contact

[email protected]