FCameCode commited on
Commit
0adec9a
·
1 Parent(s): 7be32db

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +75 -0
README.md ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - it
4
+ license: apache-2.0
5
+ tags:
6
+ - hf-asr-leaderboard
7
+ - generated_from_trainer
8
+ datasets:
9
+ - mozilla-foundation/common_voice_11_0
10
+ metrics:
11
+ - wer
12
+ model-index:
13
+ - name: Whisper Tiny it 11
14
+ results:
15
+ - task:
16
+ name: Automatic Speech Recognition
17
+ type: automatic-speech-recognition
18
+ dataset:
19
+ name: Common Voice 11.0
20
+ type: mozilla-foundation/common_voice_11_0
21
+ config: it
22
+ split: test[:10%]
23
+ args: 'config: it, split: test'
24
+ metrics:
25
+ - name: Wer
26
+ type: wer
27
+ value: 42.276761
28
+ ---
29
+ # Whisper Tiny it 11
30
+ This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Common Voice 11.0 dataset.
31
+ It achieves the following results on the evaluation set:
32
+ - Loss: 0.670211
33
+ - Wer: 42.276761
34
+ ## Model description
35
+
36
+ This model is the openai whisper small transformer adapted for Italian audio to text transcription.
37
+
38
+ ## Intended uses & limitations
39
+
40
+ The model is available through its [HuggingFace web app](https://huggingface.co/spaces/GIanlucaRub/whisper-it)
41
+
42
+ ## Training and evaluation data
43
+
44
+ Data used for training is the initial 25% of train and validation of [Italian Common Voice](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0/viewer/it/train) 11.0 from Mozilla Foundation.
45
+ The dataset used for evaluation is the initial 10% of test of Italian Common Voice.
46
+
47
+ ## Training procedure
48
+
49
+ After loading the pre trained model, it has been trained on the dataset.
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 1e-05
55
+ - train_batch_size: 16
56
+ - eval_batch_size: 8
57
+ - seed: 42
58
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
59
+ - lr_scheduler_type: linear
60
+ - lr_scheduler_warmup_steps: 500
61
+ - training_steps: 4000
62
+ - mixed_precision_training: Native AMP
63
+ ### Training results
64
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
65
+ |:-------------:|:-----:|:----:|:---------------:|:-------:|
66
+ | 0.584600 | 0.95 | 1000 | 0.801204 |48.980865|
67
+ | 0.496100 | 1.91 | 2000 | 0.713927 |46.283971|
68
+ | 0.406000 | 2.86 | 3000 | 0.680141 |43.268164|
69
+ | 0.402000 | 3.82 | 4000 | 0.670211 |42.276761|
70
+
71
+ ### Framework versions
72
+ - Transformers 4.26.0.dev0
73
+ - Pytorch 1.12.1+cu113
74
+ - Datasets 2.7.1
75
+ - Tokenizers 0.13.2