File size: 11,566 Bytes
6da2a44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
from pprint import pformat
from typing import List

import sys
import torch
import torch.nn as nn
from timm.models.layers import trunc_normal_

import models.encoder as encoder
from models.decoder import LightDecoder
from itertools import accumulate

class MambaMIM(nn.Module):
    def __init__(

            self, sparse_encoder: encoder.SparseEncoder, dense_decoder: LightDecoder,

            mask_ratio=0.6, densify_norm='ln', sbn=True,

    ):
        super().__init__()
        input_size, downsample_raito = sparse_encoder.input_size, sparse_encoder.downsample_raito
        self.downsample_raito = downsample_raito
        self.fmap_h, self.fmap_w, self.fmap_d = input_size // downsample_raito, input_size // downsample_raito, input_size // downsample_raito
        self.mask_ratio = mask_ratio
        self.len_keep = round(self.fmap_h * self.fmap_w * self.fmap_d * (1 - mask_ratio))

        self.sparse_encoder = sparse_encoder
        self.dense_decoder = dense_decoder

        self.sbn = sbn
        self.hierarchy = len(sparse_encoder.enc_feat_map_chs)
        self.densify_norm_str = densify_norm.lower()
        self.densify_norms = nn.ModuleList()
        self.densify_projs = nn.ModuleList()
        self.mask_tokens = nn.ParameterList()
        
        # build the `densify` layers
        e_widths, d_width = self.sparse_encoder.enc_feat_map_chs, self.dense_decoder.width
        e_widths: List[int]
        self.A_interpolation = nn.Parameter(torch.zeros(1, self.sparse_encoder.enc_feat_map_chs[-1], self.sparse_encoder.enc_feat_map_chs[-1]))
        print("self.A_interpolation: ", self.A_interpolation.shape)
        for i in range(
                self.hierarchy):  # from the smallest feat map to the largest; i=0: the last feat map; i=1: the second last feat map ...
            e_width = e_widths.pop()
            # create mask token
            p = nn.Parameter(torch.zeros(1, e_width, 1, 1, 1))
            trunc_normal_(p, mean=0, std=.02, a=-.02, b=.02)
            self.mask_tokens.append(p)

            # create densify norm
            densify_norm = nn.Identity()
            self.densify_norms.append(densify_norm)

            # create densify proj
            if i == 0 and e_width == d_width:
                densify_proj = nn.Identity()  # todo: NOTE THAT CONVNEXT-S WOULD USE THIS, because it has a width of 768 that equals to the decoder's width 768
                print(f'[MambaMIM.__init__, densify {i + 1}/{self.hierarchy}]: use nn.Identity() as densify_proj')
            else:
                kernel_size = 1 if i <= 0 else 3
                densify_proj = nn.Conv3d(e_width, d_width, kernel_size=kernel_size, stride=1, padding=kernel_size // 2,
                                         bias=True)
                print(
                    f'[MambaMIM.__init__, densify {i + 1}/{self.hierarchy}]: densify_proj(ksz={kernel_size}, #para={sum(x.numel() for x in densify_proj.parameters()) / 1e6:.2f}M)')
            self.densify_projs.append(densify_proj)

            # todo: the decoder's width follows a simple halfing rule; you can change it to any other rule
            d_width //= 2

        print(f'[MambaMIM.__init__] dims of mask_tokens={tuple(p.numel() for p in self.mask_tokens)}')

    def mask(self, B: int, device, generator=None):
        h, w, d = self.fmap_h, self.fmap_w, self.fmap_d
        idx = torch.rand(B, h * w * d, generator=generator).argsort(dim=1)
        idx = idx[:, :self.len_keep].to(device)  # (B, len_keep)
        return torch.zeros(B, h * w * d, dtype=torch.bool, device=device)\
            .scatter_(dim=1, index=idx, value=True).view(B, 1, h, w, d)

    def mask_token_every_batch(self, bcfff,cur_active):
        #A_token#
        flag = cur_active.flatten(2).clone()
        flag[0][0][0] = True
        flag[0][0][-1] = True

        indices = torch.nonzero(flag.squeeze()).squeeze()
        #A_token#
        B,N,H,L,W = bcfff.shape
        
        A_token =[]
        
        for i in range(0,len(indices)-1):
            A_power = [torch.linalg.matrix_power(self.A_interpolation, i) for i in range(indices[i+1]-indices[i])]
            max_power = indices[i+1]-indices[i]-1
            for j in range(0,indices[i+1]-indices[i]):
                A_token.append(A_power[max_power-j])
        A_token.append(self.A_interpolation)
        A_token = torch.cat(A_token, dim=0)

        
        X_token = []
        X_unmask = bcfff.flatten(2).transpose(1, 2).squeeze().unsqueeze(-1)
        for i in range(0,len(indices)-1):
            alpha = torch.linspace(0, 1, indices[i + 1] - indices[i], dtype=X_unmask.dtype, device=X_unmask.device)
            alpha = alpha.view(-1, 1)  # alpha
            X_interpolation = (1 - alpha) * X_unmask[indices[i]].transpose(0, 1) + alpha * X_unmask[indices[i + 1]].transpose(0, 1)
            X_token.append(X_interpolation.unsqueeze(-1))
        X_last_token = X_unmask[indices[-1]].unsqueeze(0)
        X_token.append(X_last_token)
        X_token = torch.cat(X_token,dim = 0)

        AX = A_token.cuda() @ X_token

        mask_token = AX
        for i in range(0,len(indices)-1):
            current_sum = list(accumulate(AX[indices[i]:indices[i+1]]))
            mask_token[indices[i]:indices[i+1]] = torch.stack(current_sum,dim = 0)
        mask_token = AX.reshape(B,N,H,L,W)    
        
        return mask_token


    def manba_mask(self,bcfff,cur_active):
        '''

        S6T

        '''
        B,N,H,W,L = cur_active.shape
        cur_active_list = torch.chunk(cur_active,B,dim = 0)
        bcfff_list = torch.chunk(bcfff,B,dim = 0)
        mask_token_list=[]
        for i in range(B):
            mask_token_list.append(self.mask_token_every_batch(bcfff_list[i],cur_active_list[i]))
        mask_token = torch.cat(mask_token_list, dim=0)
        
        return mask_token

    def forward(self, inp_bchwd: torch.Tensor, active_b1fff=None, vis=False):
        # step1. Mask
        if active_b1fff is None:  # rand mask
            active_b1fff: torch.BoolTensor = self.mask(inp_bchwd.shape[0], inp_bchwd.device)  # (B, 1, f, f, f)
        encoder._cur_active = active_b1fff  # (B, 1, f, f)
        active_b1hwd = active_b1fff.repeat_interleave(self.downsample_raito, 2).repeat_interleave(self.downsample_raito,
                                                                                                  3).repeat_interleave(
            self.downsample_raito, 4)  # (B, 1, H, W, D)
        masked_bchwd = inp_bchwd * active_b1hwd

        # step2. Encode: get hierarchical encoded sparse features (a list containing 4 feature maps at 4 scales)
        fea_bcfffs: List[torch.Tensor] = self.sparse_encoder(masked_bchwd, active_b1fff)
        fea_bcfffs.reverse()  # after reversion: from the smallest feature map to the largest

        # step3. Densify: get hierarchical dense features for decoding (need to modified !!!!!!!!!!!)
        cur_active = active_b1fff  # (B, 1, f, f, f)
        to_dec = []
        for i, bcfff in enumerate(fea_bcfffs):  # from the smallest feature map to the largest
            if bcfff is not None:
                bcfff = self.densify_norms[i](bcfff)
                
                mask_tokens = self.manba_mask(bcfff,cur_active) if i==0 else self.mask_tokens[i].expand_as(bcfff)
                    
                # mask_tokens = self.mask_tokens[i].expand_as(bcfff)
                bcfff = torch.where(cur_active.expand_as(bcfff), bcfff,
                                    mask_tokens)  # fill in empty (non-active) positions with [mask] tokens
                bcfff: torch.Tensor = self.densify_projs[i](bcfff)
            to_dec.append(bcfff)
            cur_active = cur_active.repeat_interleave(2, dim=2).repeat_interleave(2, dim=3).repeat_interleave(2,
                                                                                                             dim=4)  # dilate the mask map, from (B, 1, f, f) to (B, 1, H, W)
        # step4. Decode and reconstruct
        rec_bchwd = self.dense_decoder(to_dec)
        inp, rec = self.patchify(inp_bchwd), self.patchify(
            rec_bchwd)  # inp and rec: (B, L = f*f*f, N = C*downsample_raito**2)
        mean = inp.mean(dim=-1, keepdim=True)
        var = (inp.var(dim=-1, keepdim=True) + 1e-6) ** .5
        inp = (inp - mean) / var
        l2_loss = ((rec - inp) ** 2).mean(dim=2, keepdim=False)  # (B, L, C) ==mean==> (B, L)

        non_active = active_b1fff.logical_not().int().view(active_b1fff.shape[0], -1)  # (B, 1, f, f, f) => (B, L)
        recon_loss = l2_loss.mul_(non_active).sum() / (
                    non_active.sum() + 1e-8)  # loss only on masked (non-active) patches

        if vis:
            masked_bchwd = inp_bchwd * active_b1hwd
            rec_bchwd = self.unpatchify(rec * var + mean)
            rec_or_inp = torch.where(active_b1hwd, inp_bchwd, rec_bchwd)
            return inp_bchwd, masked_bchwd, rec_or_inp
        else:
            return recon_loss

    def patchify(self, bchwd):
        p = self.downsample_raito
        h, w, d = self.fmap_h, self.fmap_w, self.fmap_d
        B, C = bchwd.shape[:2]
        bchwd = bchwd.reshape(shape=(B, C, h, p, w, p, d, p))
        bchwd = torch.einsum('bchpwqds->bhwdpqsc', bchwd)
        bln = bchwd.reshape(shape=(B, h * w * d, C * p ** 3))  # (B, f*f, 3*downsample_raito**2)
        return bln

    def unpatchify(self, bln):
        p = self.downsample_raito
        h, w, d = self.fmap_h, self.fmap_w, self.fmap_d
        B, C = bln.shape[0], bln.shape[-1] // p ** 3
        bln = bln.reshape(shape=(B, h, w, d, p, p, p, C))
        bln = torch.einsum('bhwdpqsc->bchpwqds', bln)
        bchwd = bln.reshape(shape=(B, C, h * p, w * p, d * p))
        return bchwd

    def __repr__(self):
        return (
            f'\n'
            f'[MambaMIM.config]: {pformat(self.get_config(), indent=2, width=250)}\n'
            f'[MambaMIM.structure]: {super(MambaMIM, self).__repr__().replace(MambaMIM.__name__, "")}'
        )

    def get_config(self):
        return {
            # self
            'mask_ratio': self.mask_ratio,
            'densify_norm_str': self.densify_norm_str,
            'sbn': self.sbn, 'hierarchy': self.hierarchy,

            # enc
            'sparse_encoder.input_size': self.sparse_encoder.input_size,
            # dec
            'dense_decoder.width': self.dense_decoder.width,
        }

    def state_dict(self, destination=None, prefix='', keep_vars=False, with_config=False):
        state = super(MambaMIM, self).state_dict(destination=destination, prefix=prefix, keep_vars=keep_vars)
        if with_config:
            state['config'] = self.get_config()
        return state

    def load_state_dict(self, state_dict, strict=True):
        config: dict = state_dict.pop('config', None)
        incompatible_keys = super(MambaMIM, self).load_state_dict(state_dict, strict=strict)
        if config is not None:
            for k, v in self.get_config().items():
                ckpt_v = config.get(k, None)
                if ckpt_v != v:
                    err = f'[SparseMIM.load_state_dict] config mismatch:  this.{k}={v} (ckpt.{k}={ckpt_v})'
                    if strict:
                        raise AttributeError(err)
                    else:
                        print(err, file=sys.stderr)
        return incompatible_keys