File size: 23,642 Bytes
6da2a44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
import torch
import torch.nn as nn
from models.encoder import SparseConvNeXtLayerNorm, _get_active_ex_or_ii
from typing import Optional, Sequence, Tuple, Union, List
import numpy as np
from models.mamba.bi_vision_mamba import Mamba
from monai.networks.blocks.unetr_block import UnetrUpBlock

def build_3d_sincos_position_embedding(grid_size, embed_dim, num_tokens=0, temperature=10000.):
    grid_size = (grid_size, grid_size, grid_size)
    h, w, d = grid_size
    grid_h = torch.arange(h, dtype=torch.float32)
    grid_w = torch.arange(w, dtype=torch.float32)
    grid_d = torch.arange(d, dtype=torch.float32)

    grid_h, grid_w, grid_d = torch.meshgrid(grid_h, grid_w, grid_d)
    assert embed_dim % 6 == 0, 'Embed dimension must be divisible by 6 for 3D sin-cos position embedding'
    pos_dim = embed_dim // 6
    omega = torch.arange(pos_dim, dtype=torch.float32) / pos_dim
    omega = 1. / (temperature ** omega)
    out_h = torch.einsum('m,d->md', [grid_h.flatten(), omega])
    out_w = torch.einsum('m,d->md', [grid_w.flatten(), omega])
    out_d = torch.einsum('m,d->md', [grid_d.flatten(), omega])
    pos_emb = torch.cat(
        [torch.sin(out_h), torch.cos(out_h), torch.sin(out_w), torch.cos(out_w), torch.sin(out_d), torch.cos(out_d)],
        dim=1)[None, :, :]

    assert num_tokens == 1 or num_tokens == 0, "Number of tokens must be of 0 or 1"
    if num_tokens == 1:
        pe_token = torch.zeros([1, 1, embed_dim], dtype=torch.float32)
        pos_embed = nn.Parameter(torch.cat([pe_token, pos_emb], dim=1))
    else:
        pos_embed = nn.Parameter(pos_emb)
    pos_embed.requires_grad = False
    return pos_embed


class MlpChannel(nn.Module):
    def __init__(self, hidden_size, mlp_dim):
        super().__init__()
        self.fc1 = nn.Linear(hidden_size, mlp_dim)
        self.act = nn.GELU()
        self.fc2 = nn.Linear(mlp_dim, hidden_size)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.fc2(x)
        return x


class MambaLayer(nn.Module):
    def __init__(self, dim, d_state=16, d_conv=4, expand=2):
        super().__init__()
        self.dim = dim
        self.norm1 = nn.LayerNorm(dim)
        self.mamba = Mamba(
            d_model=dim,  # Model dimension d_model
            d_state=d_state,  # SSM state expansion factor
            d_conv=d_conv,  # Local convolution width
            expand=expand,  # Block expansion factor
            bimamba_type="v1",
        )
        self.mlp = MlpChannel(hidden_size=dim, mlp_dim=2 * dim)
        self.norm2 = nn.LayerNorm(dim)
    def forward(self, x):
        x = self.mamba(self.norm1(x)) + x
        x = self.mlp(self.norm2(x)) + x
        return x


class MaskedAutoencoderMamba(nn.Module):
    """ Masked Autoencoder with VisionTransformer backbone

    """

    def __init__(self, img_size=96, downsample_rato=16, embed_dim=384, depth=8, norm_layer=nn.LayerNorm, sparse=True):
        super().__init__()
        print("mamba sparse: ", sparse)
        # --------------------------------------------------------------------------
        # MAE encoder specifics
        self.grid_size = img_size // downsample_rato
        self.num_patches = (self.grid_size) ** 3
        self.embed_dim = embed_dim
        self.pos_embed = nn.Parameter(torch.zeros(1, self.num_patches, embed_dim),
                                      requires_grad=False)  # fixed sin-cos embedding
        
        self.blocks = nn.ModuleList([
            MambaLayer(dim=embed_dim)
            for i in range(depth)])
        # self.gsc = GSC(in_channels=embed_dim, sparse=sparse)
       
        self.sparse = sparse
        if self.sparse:
            self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
        # --------------------------------------------------------------------------
        self.initialize_weights()

    def initialize_weights(self):
        # initialization
        # initialize (and freeze) pos_embed by sin-cos embedding
        pos_embed = build_3d_sincos_position_embedding(self.grid_size, self.embed_dim)
        self.pos_embed.data.copy_(pos_embed)
        if self.sparse:
            torch.nn.init.normal_(self.mask_token, std=.02)
        # initialize nn.Linear and nn.LayerNorm
        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            # we use xavier_uniform following official JAX ViT:
            torch.nn.init.xavier_uniform_(m.weight)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    def random_masking(self, enc, active_b1fff):
        """

        Perform per-sample random masking by per-sample shuffling.

        Per-sample shuffling is done by argsort random noise.

        x: [N, L, D], sequence

        """
        N, L, D = enc.shape  # batch, length, dim
        mask = torch.tensor(active_b1fff, dtype=torch.int).flatten(2).transpose(1, 2)
        # sort noise for each sample
        noise = 1 - mask
        len_keep = torch.sum(mask)
        ids_shuffle = torch.argsort(noise, dim=1)  # ascend: small is keep, large is remove
        ids_restore = torch.argsort(ids_shuffle, dim=1)

        # keep the first subset
        ids_keep = ids_shuffle[:, :len_keep]
        x_masked = torch.gather(enc, dim=1, index=ids_keep.repeat(1, 1, D))

        # generate the binary mask: 0 is keep, 1 is remove
        return x_masked, mask, ids_restore

    def unmasking(self, x, ids_restore):
        mask_tokens = self.mask_token.repeat(x.shape[0], ids_restore.shape[1] - x.shape[1], 1)
        x_ = torch.cat([x, mask_tokens], dim=1)  # no cls token
        x = torch.gather(x_, dim=1, index=ids_restore.repeat(1, 1, x.shape[2]))  # unshuffle
        return x

    def forward_encoder(self, enc, active_b1fff=None):
        # enc = self.gsc(enc)
        B, C, H, W, D = enc.shape
        x = enc.flatten(2).transpose(1, 2)
        # add pos embed w/o cls token
        x = x + self.pos_embed
        if self.sparse:
            # masking: length -> length * mask_ratio
            x, mask, ids_restore = self.random_masking(x, active_b1fff)
            # apply Mamba blocks
            for blk in self.blocks:
                x = blk(x)
            x = self.unmasking(x, ids_restore)
        else:
            for blk in self.blocks:
                x = blk(x)
        x = x.transpose(1, 2).reshape(B, C, H, W, D)
        return x

    def forward(self, imgs, active_b1fff=None):
        return self.forward_encoder(imgs, active_b1fff)


class MedNeXtBlock(nn.Module):
    def __init__(self,

                 in_channels: int,

                 out_channels: int,

                 exp_r: int = 4,

                 kernel_size: int = 7,

                 do_res: int = True,

                 n_groups: int or None = None,

                 sparse=False):

        super().__init__()

        self.do_res = do_res
        self.sparse = sparse
        conv = nn.Conv3d

        # First convolution layer with DepthWise Convolutions
        self.conv1 = conv(
            in_channels=in_channels,
            out_channels=in_channels,
            kernel_size=kernel_size,
            stride=1,
            padding=kernel_size // 2,
            groups=in_channels if n_groups is None else n_groups,
        )

        # Normalization Layer. GroupNorm is used by default.

        self.norm = SparseConvNeXtLayerNorm(normalized_shape=in_channels, data_format='channels_first', sparse=sparse)

        # Second convolution (Expansion) layer with Conv3D 1x1x1
        self.conv2 = conv(
            in_channels=in_channels,
            out_channels=exp_r * in_channels,
            kernel_size=1,
            stride=1,
            padding=0
        )

        # GeLU activations
        self.act = nn.GELU()

        # Third convolution (Compression) layer with Conv3D 1x1x1
        self.conv3 = conv(
            in_channels=exp_r * in_channels,
            out_channels=out_channels,
            kernel_size=1,
            stride=1,
            padding=0
        )

    def forward(self, x, dummy_tensor=None):

        x1 = x
        x1 = self.conv1(x1)
        x1 = self.act(self.conv2(self.norm(x1)))
        x1 = self.conv3(x1)
        if self.sparse:
            x1 *= _get_active_ex_or_ii(H=x1.shape[2], W=x1.shape[3], D=x1.shape[4], returning_active_ex=True)
        if self.do_res:
            x1 = x + x1
        return x1


class MedNeXtDownBlock(MedNeXtBlock):

    def __init__(self, in_channels, out_channels, exp_r=4, kernel_size=7,

                 do_res=False, sparse=False):

        super().__init__(in_channels, out_channels, exp_r, kernel_size,
                         do_res=False, sparse=sparse)

        self.resample_do_res = do_res
        if do_res:
            self.res_conv = nn.Conv3d(
                in_channels=in_channels,
                out_channels=out_channels,
                kernel_size=1,
                stride=2
            )

        self.conv1 = nn.Conv3d(
            in_channels=in_channels,
            out_channels=in_channels,
            kernel_size=kernel_size,
            stride=2,
            padding=kernel_size // 2,
            groups=in_channels,
        )

    def forward(self, x, dummy_tensor=None):

        x1 = super().forward(x)
        if self.resample_do_res:
            res = self.res_conv(x)
            x1 = x1 + res

        return x1


class UnetResBlock(nn.Module):
    """

    A skip-connection based module that can be used for DynUNet, based on:

    `Automated Design of Deep Learning Methods for Biomedical Image Segmentation <https://arxiv.org/abs/1904.08128>`_.

    `nnU-Net: Self-adapting Framework for U-Net-Based Medical Image Segmentation <https://arxiv.org/abs/1809.10486>`_.



    Args:

        spatial_dims: number of spatial dimensions.

        in_channels: number of input channels.

        out_channels: number of output channels.

        kernel_size: convolution kernel size.

        stride: convolution stride.

        norm_name: feature normalization type and arguments.

        act_name: activation layer type and arguments.

        dropout: dropout probability.



    """

    def __init__(

            self,

            sparse: bool,

            in_channels: int,

            out_channels: int,

            kernel_size: Union[Sequence[int], int],

            stride: Union[Sequence[int], int],

    ):
        super().__init__()
        self.conv1 = nn.Conv3d(
            in_channels,
            out_channels,
            kernel_size=kernel_size,
            stride=stride,
            padding=kernel_size // 2)
        self.conv2 = nn.Conv3d(
            out_channels,
            out_channels,
            kernel_size=kernel_size,
            stride=1,
            padding=kernel_size // 2,
        )
        self.lrelu = nn.LeakyReLU(inplace=True, negative_slope=0.01)
        self.norm1 = SparseConvNeXtLayerNorm(normalized_shape=out_channels, data_format='channels_first', sparse=sparse)
        self.norm2 = SparseConvNeXtLayerNorm(normalized_shape=out_channels, data_format='channels_first', sparse=sparse)
        self.downsample = in_channels != out_channels
        stride_np = np.atleast_1d(stride)
        if not np.all(stride_np == 1):
            self.downsample = True
        if self.downsample:
            self.conv3 = nn.Conv3d(
                in_channels,
                out_channels,
                kernel_size=1,
                stride=stride)
            self.norm3 = SparseConvNeXtLayerNorm(normalized_shape=out_channels, data_format='channels_first', sparse=sparse)

    def forward(self, inp):
        residual = inp
        out = self.conv1(inp)
        out = self.norm1(out)
        out = self.lrelu(out)
        out = self.conv2(out)
        out = self.norm2(out)
        if hasattr(self, "conv3"):
            residual = self.conv3(residual)
        if hasattr(self, "norm3"):
            residual = self.norm3(residual)
        out += residual
        out = self.lrelu(out)
        return out


class MedNeXtUpBlock(MedNeXtBlock):

    def __init__(self, in_channels, out_channels, exp_r=4, kernel_size=3,

                 do_res=True, sparse=False):
        super().__init__(in_channels, out_channels, exp_r, kernel_size,
                         do_res=False, sparse=sparse)

        self.resample_do_res = do_res

        conv = nn.ConvTranspose3d
        if do_res:
            self.res_conv = conv(
                in_channels=in_channels,
                out_channels=out_channels,
                kernel_size=1,
                stride=2
            )

        self.conv1 = conv(
            in_channels=in_channels,
            out_channels=in_channels,
            kernel_size=kernel_size,
            stride=2,
            padding=kernel_size // 2,
            groups=in_channels,
        )

    def forward(self, x, dummy_tensor=None):

        x1 = super().forward(x)
        # Asymmetry but necessary to match shape
        x1 = torch.nn.functional.pad(x1, (1, 0, 1, 0, 1, 0))

        if self.resample_do_res:
            res = self.res_conv(x)
        res = torch.nn.functional.pad(res, (1, 0, 1, 0, 1, 0))
        x1 = x1 + res
        return x1


class UnetOutBlock(nn.Module):
    def __init__(self, in_channels: int, n_classes: int):
        super().__init__()
        self.conv = nn.Conv3d(
            in_channels,
            n_classes,
            kernel_size=1,
            stride=1,
            bias=True,
        )

    def forward(self, inp):
        return self.conv(inp)


class Embeddings(nn.Module):
    def __init__(self,

                 in_channel: int = 3,

                 channels: Tuple = (32, 64, 96, 128, 192),

                 depths: Tuple = (1, 1, 3, 1, 1),

                 kernels: Tuple = (3, 3, 3, 3, 3),

                 exp_r: Tuple = (2, 4, 4, 4, 2),

                 sparse=True):
        super(Embeddings, self).__init__()
        self.dim = [channels[1], channels[2], channels[3], channels[4], channels[4]]
        self.stem = nn.Conv3d(in_channels=in_channel, out_channels=channels[0], kernel_size=3, stride=1, padding=1)


        self.layer2 = nn.Sequential(*[
            MedNeXtBlock(
                in_channels=channels[1],
                out_channels=channels[1],
                exp_r=exp_r[1],
                kernel_size=kernels[1],
                do_res=True,
                sparse=sparse
            )
            for i in range(depths[1])])

        self.layer3 = nn.Sequential(*[
            MedNeXtBlock(
                in_channels=channels[2],
                out_channels=channels[2],
                exp_r=exp_r[2],
                kernel_size=kernels[2],
                do_res=True,
                sparse=sparse
            )
            for i in range(depths[2])])

        self.layer4 = nn.Sequential(*[
            MedNeXtBlock(
                in_channels=channels[3],
                out_channels=channels[3],
                exp_r=exp_r[3],
                kernel_size=kernels[3],
                do_res=True,
                sparse=sparse
            )
            for i in range(depths[3])])

        self.layer5 = nn.Sequential(*[
            MedNeXtBlock(
                in_channels=channels[4],
                out_channels=channels[4],
                exp_r=exp_r[4],
                kernel_size=kernels[4],
                do_res=True,
                sparse=sparse
            )
            for i in range(depths[4])])

        self.down = nn.MaxPool3d((2, 2, 2))
        self.expend1 = nn.Conv3d(in_channels=channels[0], out_channels=channels[1], kernel_size=3, stride=1, padding=1)
        self.expend2 = nn.Conv3d(in_channels=channels[1], out_channels=channels[2], kernel_size=3, stride=1, padding=1)
        self.expend3 = nn.Conv3d(in_channels=channels[2], out_channels=channels[3], kernel_size=3, stride=1, padding=1)
        self.expend4 = nn.Conv3d(in_channels=channels[3], out_channels=channels[4], kernel_size=3, stride=1, padding=1)

        self.encoder1 = UnetResBlock(
            in_channels=channels[1],
            out_channels=channels[1],
            kernel_size=3,
            stride=1,
            sparse=sparse
        )
        self.encoder2 = UnetResBlock(
            in_channels=channels[2],
            out_channels=channels[2],
            kernel_size=3,
            stride=1,
            sparse=sparse
        )
        self.encoder3 = UnetResBlock(
            in_channels=channels[3],
            out_channels=channels[3],
            kernel_size=3,
            stride=1,
            sparse=sparse
        )
        self.encoder4 = UnetResBlock(
            in_channels=channels[4],
            out_channels=channels[4],
            kernel_size=3,
            stride=1,
            sparse=sparse
        )



    def forward(self, x):
        x = self.stem(x)

        x1 = self.expend1(x)

        x = self.down(x1)
        x = self.layer2(x)
        x2 = self.expend2(x)

        x = self.down(x2)
        x = self.layer3(x)
        x3 = self.expend3(x)

        x = self.down(x3)
        x = self.layer4(x)
        x4 = self.expend4(x)

        x = self.down(x4)
        x5 = self.layer5(x)

        return self.encoder1(x1), self.encoder2(x2), self.encoder3(x3), self.encoder4(x4), x5


class Encoder(nn.Module):

    def __init__(self,

                 in_channel: int = 1,

                 channels=(32, 64, 128, 192, 384),

                 depths=(1, 2, 2, 2, 1),

                 kernels=(3, 3, 3, 3, 3),

                 exp_r=(2, 2, 4, 4, 4),

                 img_size=96,

                 depth=4,

                 norm_layer=nn.LayerNorm,

                 sparse=False):
        super(Encoder, self).__init__()
        self.dim = [channels[1], channels[2], channels[3], channels[4], channels[4]]

        self.embeddings = Embeddings(in_channel=in_channel,
                                     channels=channels,
                                     depths=depths,
                                     kernels=kernels,
                                     exp_r=exp_r,
                                     sparse=sparse)

        self.mae = MaskedAutoencoderMamba(
            img_size=img_size,
            downsample_rato=self.get_downsample_ratio(),
            embed_dim=channels[-1],
            depth=depth,
            norm_layer=norm_layer,
            sparse=sparse)

    def get_downsample_ratio(self) -> int:
        """

        This func would ONLY be used in `SparseEncoder's __init__` (see `pretrain/encoder.py`).



        :return: the TOTAL downsample ratio of the ConvNet.

        E.g., for a ResNet-50, this should return 32.

        """
        return 16

    def get_feature_map_channels(self) -> List[int]:
        """

        This func would ONLY be used in `SparseEncoder's __init__` (see `pretrain/encoder.py`).



        :return: a list of the number of channels of each feature map.

        E.g., for a ResNet-50, this should return [256, 512, 1024, 2048].

        """
        return self.dim

    def forward(self, x, active_b1fff=None):
        x1, x2, x3, x4, x5 = self.embeddings(x)
        _x5 = self.mae(x5, active_b1fff)
        return x1, x2, x3, x4, _x5


class Decoder(nn.Module):
    def __init__(self,

                 n_classes: int = 3,

                 channels: Tuple = (32, 64, 128, 196, 384),

                 norm_name = "instance",

                 res_block: bool = True):
        super(Decoder, self).__init__()

        self.decoder5 = UnetrUpBlock(
            spatial_dims=3,
            in_channels=channels[4],
            out_channels=channels[4],
            kernel_size=3,
            upsample_kernel_size=2,
            norm_name=norm_name,
            res_block=res_block,
        )
        self.decoder4 = UnetrUpBlock(
            spatial_dims=3,
            in_channels=channels[4],
            out_channels=channels[3],
            kernel_size=3,
            upsample_kernel_size=2,
            norm_name=norm_name,
            res_block=res_block,
        )
        self.decoder3 = UnetrUpBlock(
            spatial_dims=3,
            in_channels=channels[3],
            out_channels=channels[2],
            kernel_size=3,
            upsample_kernel_size=2,
            norm_name=norm_name,
            res_block=res_block,
        )
        self.decoder2 = UnetrUpBlock(
            spatial_dims=3,
            in_channels=channels[2],
            out_channels=channels[1],
            kernel_size=3,
            upsample_kernel_size=2,
            norm_name=norm_name,
            res_block=res_block,
        )
        self.decoder1 = UnetResBlock(
            in_channels=channels[1],
            out_channels=channels[0],
            kernel_size=3,
            stride=1,
            sparse=False
        )
        self.out = UnetOutBlock(in_channels=channels[0], n_classes=n_classes)

    def forward(self, x1, x2, x3, x4, x5):
        d4 = self.decoder5(x5, x4)
        d3 = self.decoder4(d4, x3)
        d2 = self.decoder3(d3, x2)
        d1 = self.decoder2(d2, x1)
        d0 = self.decoder1(d1)
        return self.out(d0)


class Hybird(nn.Module):
    def __init__(self,

                 in_channel: int = 3,

                 n_classes: int = 3,

                 channels: Tuple = (32, 64, 96, 128, 192),

                 depths: Tuple = (1, 1, 3, 3, 1),

                 kernels: Tuple = (3, 3, 3, 3, 3),

                 exp_r: Tuple = (2, 4, 4, 4, 2),

                 img_size=96,

                 depth=3,

                 norm_layer=nn.LayerNorm, ):
        super().__init__()
        self.embeddings = Embeddings(in_channel=in_channel,
                                     channels=channels,
                                     depths=depths,
                                     kernels=kernels,
                                     exp_r=exp_r,
                                     sparse=False)

        self.mae = MaskedAutoencoderMamba(
            img_size=img_size,
            downsample_rato=16,
            embed_dim=channels[-1],
            depth=depth,
            norm_layer=norm_layer,
            sparse=False)

        self.decoder = Decoder(
            n_classes=n_classes,
            channels=channels,
        )

    def forward(self, x):
        x1, x2, x3, x4, x5 = self.embeddings(x)
        x5 = self.mae(x5, None)
        return self.decoder(x1, x2, x3, x4, x5)


def build_hybird(in_channel=1, n_classes=14, img_size=96):
    return Hybird(in_channel=in_channel,
                  n_classes=n_classes,
                  channels=(32, 64, 128, 192, 384),
                  depths=(1, 2, 2, 2, 1),
                  kernels=(3, 3, 3, 3, 3),
                  exp_r=(2, 2, 4, 4, 4),
                  img_size=img_size,
                  depth=4)


if __name__ == '__main__':
    x = torch.rand((1, 1, 96, 96, 96))
    network = build_hybird()
    print(network(x).shape)