File size: 12,069 Bytes
6da2a44 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 |
import datetime
import functools
import os
import subprocess
import sys
import time
from collections import defaultdict, deque
from typing import Iterator
import numpy as np
import pytz
import torch
from torch.utils.tensorboard import SummaryWriter
import dist
os_system = functools.partial(subprocess.call, shell=True)
os_system_get_stdout = lambda cmd: subprocess.run(cmd, shell=True, stdout=subprocess.PIPE).stdout.decode('utf-8')
def os_system_get_stdout_stderr(cmd):
sp = subprocess.run(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
return sp.stdout.decode('utf-8'), sp.stderr.decode('utf-8')
def is_pow2n(x):
return x > 0 and ((x - 1) & x == 0)
def time_str(for_dirname=False):
return datetime.datetime.now(tz=pytz.timezone('Asia/Shanghai')).strftime(
'%m-%d_%H-%M-%S' if for_dirname else '[%m-%d %H:%M:%S]')
def init_distributed_environ(exp_dir):
dist.initialize()
dist.barrier()
import torch.backends.cudnn as cudnn
cudnn.benchmark = True
cudnn.deterministic = False
_set_print_only_on_master_proc(is_master=dist.is_local_master())
if dist.is_local_master() and len(exp_dir):
sys.stdout, sys.stderr = _SyncPrintToFile(exp_dir, stdout=True), _SyncPrintToFile(exp_dir, stdout=False)
def _set_print_only_on_master_proc(is_master):
import builtins as __builtin__
builtin_print = __builtin__.print
def prt(msg, *args, **kwargs):
force = kwargs.pop('force', False)
clean = kwargs.pop('clean', False)
deeper = kwargs.pop('deeper', False)
if is_master or force:
if not clean:
f_back = sys._getframe().f_back
if deeper and f_back.f_back is not None:
f_back = f_back.f_back
file_desc = f'{f_back.f_code.co_filename:24s}'[-24:]
msg = f'{time_str()} ({file_desc}, line{f_back.f_lineno:-4d})=> {msg}'
builtin_print(msg, *args, **kwargs)
__builtin__.print = prt
class _SyncPrintToFile(object):
def __init__(self, exp_dir, stdout=True):
self.terminal = sys.stdout if stdout else sys.stderr
fname = os.path.join(exp_dir, 'stdout_backup.txt' if stdout else 'stderr_backup.txt')
self.log = open(fname, 'w')
self.log.flush()
def write(self, message):
self.terminal.write(message)
self.log.write(message)
self.log.flush()
def flush(self):
self.terminal.flush()
self.log.flush()
class TensorboardLogger(object):
def __init__(self, log_dir, is_master, prefix='pt'):
self.is_master = is_master
self.writer = SummaryWriter(log_dir=log_dir) if self.is_master else None
self.step = 0
self.prefix = prefix
self.log_freq = 300
def set_step(self, step=None):
if step is not None:
self.step = step
else:
self.step += 1
def get_loggable(self, step=None):
if step is None: # iter wise
step = self.step
loggable = step % self.log_freq == 0
else: # epoch wise
loggable = True
return step, (loggable and self.is_master)
def update(self, head='scalar', step=None, **kwargs):
step, loggable = self.get_loggable(step)
if loggable:
head = f'{self.prefix}_{head}'
for k, v in kwargs.items():
if v is None:
continue
if isinstance(v, torch.Tensor):
v = v.item()
assert isinstance(v, (float, int))
self.writer.add_scalar(head + "/" + k, v, step)
def log_distribution(self, tag, values, step=None):
step, loggable = self.get_loggable(step)
if loggable:
if not isinstance(values, torch.Tensor):
values = torch.tensor(values)
self.writer.add_histogram(tag=tag, values=values, global_step=step)
def log_image(self, tag, img, step=None, dataformats='NCHW'):
step, loggable = self.get_loggable(step)
if loggable:
# img = img.cpu().numpy()
self.writer.add_image(tag, img, step, dataformats=dataformats)
def flush(self):
if self.is_master: self.writer.flush()
def close(self):
if self.is_master: self.writer.close()
def save_checkpoint_with_meta_info_and_opt_state(save_to, args, epoch, performance_desc, model_without_ddp_state,
optimizer_state):
checkpoint_path = os.path.join(args.exp_dir, save_to)
if dist.is_local_master():
to_save = {
'args': str(args),
'input_size': args.input_size,
'arch': args.model,
'epoch': epoch,
'performance_desc': performance_desc,
'module': model_without_ddp_state,
'optimizer': optimizer_state,
'is_pretrain': True,
}
torch.save(to_save, checkpoint_path)
def save_checkpoint_model_weights_only(save_to, args, sp_cnn_state):
checkpoint_path = os.path.join(args.exp_dir, save_to)
if dist.is_local_master():
torch.save(sp_cnn_state, checkpoint_path)
def initialize_weight(init_weight: str, model_without_ddp):
# use some checkpoint as model weight initialization; ONLY load model weights
if len(init_weight):
checkpoint = torch.load(init_weight, 'cpu')
missing, unexpected = model_without_ddp.load_state_dict(checkpoint.get('module', checkpoint), strict=False)
print(f'[initialize_weight] missing_keys={missing}')
print(f'[initialize_weight] unexpected_keys={unexpected}')
def load_checkpoint(resume_from: str, model_without_ddp, optimizer):
# resume the experiment from some checkpoint.pth; load model weights, optimizer states, and last epoch
if len(resume_from) == 0:
return 0, '[no performance_desc]'
print(f'[try to resume from file `{resume_from}`]')
checkpoint = torch.load(resume_from, map_location='cpu')
ep_start, performance_desc = checkpoint.get('epoch', -1) + 1, checkpoint.get('performance_desc',
'[no performance_desc]')
missing, unexpected = model_without_ddp.load_state_dict(checkpoint.get('module', checkpoint), strict=False)
print(f'[load_checkpoint] missing_keys={missing}')
print(f'[load_checkpoint] unexpected_keys={unexpected}')
print(f'[load_checkpoint] ep_start={ep_start}, performance_desc={performance_desc}')
if 'optimizer' in checkpoint:
optimizer.load_state_dict(checkpoint['optimizer'])
return ep_start, performance_desc
class SmoothedValue(object):
"""Track a series of values and provide access to smoothed values over a
window or the global series average.
"""
def __init__(self, window_size=20, fmt=None):
if fmt is None:
fmt = "{median:.4f} ({global_avg:.4f})"
self.deque = deque(maxlen=window_size)
self.total = 0.0
self.count = 0
self.fmt = fmt
def update(self, value, n=1):
self.deque.append(value)
self.count += n
self.total += value * n
def synchronize_between_processes(self):
"""
Warning: does not synchronize the deque!
"""
t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda')
dist.barrier()
dist.allreduce(t)
t = t.tolist()
self.count = int(t[0])
self.total = t[1]
@property
def median(self):
d = torch.tensor(list(self.deque))
return d.median().item()
@property
def avg(self):
d = torch.tensor(list(self.deque), dtype=torch.float32)
return d.mean().item()
@property
def global_avg(self):
return self.total / self.count
@property
def max(self):
return max(self.deque)
@property
def value(self):
return self.deque[-1]
def __str__(self):
return self.fmt.format(
median=self.median,
avg=self.avg,
global_avg=self.global_avg,
max=self.max,
value=self.value)
class MetricLogger(object):
def __init__(self, delimiter="\t"):
self.meters = defaultdict(SmoothedValue)
self.delimiter = delimiter
def update(self, **kwargs):
for k, v in kwargs.items():
if v is None:
continue
if isinstance(v, torch.Tensor):
v = v.item()
assert isinstance(v, (float, int))
self.meters[k].update(v)
def __getattr__(self, attr):
if attr in self.meters:
return self.meters[attr]
if attr in self.__dict__:
return self.__dict__[attr]
raise AttributeError("'{}' object has no attribute '{}'".format(
type(self).__name__, attr))
def __str__(self):
loss_str = []
for name, meter in self.meters.items():
loss_str.append(
"{}: {}".format(name, str(meter))
)
return self.delimiter.join(loss_str)
def synchronize_between_processes(self):
for meter in self.meters.values():
meter.synchronize_between_processes()
def add_meter(self, name, meter):
self.meters[name] = meter
def log_every(self, max_iters, itrt, print_freq, header=None):
print_iters = set(np.linspace(0, max_iters - 1, print_freq, dtype=int).tolist())
if not header:
header = ''
start_time = time.time()
end = time.time()
self.iter_time = SmoothedValue(fmt='{avg:.4f}')
self.data_time = SmoothedValue(fmt='{avg:.4f}')
space_fmt = ':' + str(len(str(max_iters))) + 'd'
log_msg = [
header,
'[{0' + space_fmt + '}/{1}]',
'eta: {eta}',
'{meters}',
'iter: {time}s',
'data: {data}s'
]
log_msg = self.delimiter.join(log_msg)
if isinstance(itrt, Iterator) and not hasattr(itrt, 'preload') and not hasattr(itrt, 'set_epoch'):
for i in range(max_iters):
obj = next(itrt)
self.data_time.update(time.time() - end)
yield obj
self.iter_time.update(time.time() - end)
if i in print_iters:
eta_seconds = self.iter_time.global_avg * (max_iters - i)
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
print(log_msg.format(
i, max_iters, eta=eta_string,
meters=str(self),
time=str(self.iter_time), data=str(self.data_time)))
end = time.time()
else:
for i, obj in enumerate(itrt):
self.data_time.update(time.time() - end)
yield obj
self.iter_time.update(time.time() - end)
if i in print_iters:
eta_seconds = self.iter_time.global_avg * (max_iters - i)
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
print(log_msg.format(
i, max_iters, eta=eta_string,
meters=str(self),
time=str(self.iter_time), data=str(self.data_time)))
end = time.time()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('{} Total time: {} ({:.3f} s / it)'.format(
header, total_time_str, total_time / max_iters))
|