File size: 12,069 Bytes
6da2a44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
import datetime
import functools
import os
import subprocess
import sys
import time
from collections import defaultdict, deque
from typing import Iterator

import numpy as np
import pytz
import torch
from torch.utils.tensorboard import SummaryWriter

import dist

os_system = functools.partial(subprocess.call, shell=True)
os_system_get_stdout = lambda cmd: subprocess.run(cmd, shell=True, stdout=subprocess.PIPE).stdout.decode('utf-8')


def os_system_get_stdout_stderr(cmd):
    sp = subprocess.run(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
    return sp.stdout.decode('utf-8'), sp.stderr.decode('utf-8')


def is_pow2n(x):
    return x > 0 and ((x - 1) & x == 0)


def time_str(for_dirname=False):
    return datetime.datetime.now(tz=pytz.timezone('Asia/Shanghai')).strftime(
        '%m-%d_%H-%M-%S' if for_dirname else '[%m-%d %H:%M:%S]')


def init_distributed_environ(exp_dir):
    dist.initialize()
    dist.barrier()

    import torch.backends.cudnn as cudnn
    cudnn.benchmark = True
    cudnn.deterministic = False

    _set_print_only_on_master_proc(is_master=dist.is_local_master())
    if dist.is_local_master() and len(exp_dir):
        sys.stdout, sys.stderr = _SyncPrintToFile(exp_dir, stdout=True), _SyncPrintToFile(exp_dir, stdout=False)


def _set_print_only_on_master_proc(is_master):
    import builtins as __builtin__

    builtin_print = __builtin__.print

    def prt(msg, *args, **kwargs):
        force = kwargs.pop('force', False)
        clean = kwargs.pop('clean', False)
        deeper = kwargs.pop('deeper', False)
        if is_master or force:
            if not clean:
                f_back = sys._getframe().f_back
                if deeper and f_back.f_back is not None:
                    f_back = f_back.f_back
                file_desc = f'{f_back.f_code.co_filename:24s}'[-24:]
                msg = f'{time_str()} ({file_desc}, line{f_back.f_lineno:-4d})=> {msg}'
            builtin_print(msg, *args, **kwargs)

    __builtin__.print = prt


class _SyncPrintToFile(object):
    def __init__(self, exp_dir, stdout=True):
        self.terminal = sys.stdout if stdout else sys.stderr
        fname = os.path.join(exp_dir, 'stdout_backup.txt' if stdout else 'stderr_backup.txt')
        self.log = open(fname, 'w')
        self.log.flush()

    def write(self, message):
        self.terminal.write(message)
        self.log.write(message)
        self.log.flush()

    def flush(self):
        self.terminal.flush()
        self.log.flush()


class TensorboardLogger(object):
    def __init__(self, log_dir, is_master, prefix='pt'):
        self.is_master = is_master
        self.writer = SummaryWriter(log_dir=log_dir) if self.is_master else None
        self.step = 0
        self.prefix = prefix
        self.log_freq = 300

    def set_step(self, step=None):
        if step is not None:
            self.step = step
        else:
            self.step += 1

    def get_loggable(self, step=None):
        if step is None:  # iter wise
            step = self.step
            loggable = step % self.log_freq == 0
        else:  # epoch wise
            loggable = True
        return step, (loggable and self.is_master)

    def update(self, head='scalar', step=None, **kwargs):
        step, loggable = self.get_loggable(step)
        if loggable:
            head = f'{self.prefix}_{head}'
            for k, v in kwargs.items():
                if v is None:
                    continue
                if isinstance(v, torch.Tensor):
                    v = v.item()
                assert isinstance(v, (float, int))
                self.writer.add_scalar(head + "/" + k, v, step)

    def log_distribution(self, tag, values, step=None):
        step, loggable = self.get_loggable(step)
        if loggable:
            if not isinstance(values, torch.Tensor):
                values = torch.tensor(values)
            self.writer.add_histogram(tag=tag, values=values, global_step=step)

    def log_image(self, tag, img, step=None, dataformats='NCHW'):
        step, loggable = self.get_loggable(step)
        if loggable:
            # img = img.cpu().numpy()
            self.writer.add_image(tag, img, step, dataformats=dataformats)

    def flush(self):
        if self.is_master: self.writer.flush()

    def close(self):
        if self.is_master: self.writer.close()


def save_checkpoint_with_meta_info_and_opt_state(save_to, args, epoch, performance_desc, model_without_ddp_state,

                                                 optimizer_state):
    checkpoint_path = os.path.join(args.exp_dir, save_to)
    if dist.is_local_master():
        to_save = {
            'args': str(args),
            'input_size': args.input_size,
            'arch': args.model,
            'epoch': epoch,
            'performance_desc': performance_desc,
            'module': model_without_ddp_state,
            'optimizer': optimizer_state,
            'is_pretrain': True,
        }
        torch.save(to_save, checkpoint_path)


def save_checkpoint_model_weights_only(save_to, args, sp_cnn_state):
    checkpoint_path = os.path.join(args.exp_dir, save_to)
    if dist.is_local_master():
        torch.save(sp_cnn_state, checkpoint_path)


def initialize_weight(init_weight: str, model_without_ddp):
    # use some checkpoint as model weight initialization; ONLY load model weights
    if len(init_weight):
        checkpoint = torch.load(init_weight, 'cpu')
        missing, unexpected = model_without_ddp.load_state_dict(checkpoint.get('module', checkpoint), strict=False)
        print(f'[initialize_weight] missing_keys={missing}')
        print(f'[initialize_weight] unexpected_keys={unexpected}')


def load_checkpoint(resume_from: str, model_without_ddp, optimizer):
    # resume the experiment from some checkpoint.pth; load model weights, optimizer states, and last epoch
    if len(resume_from) == 0:
        return 0, '[no performance_desc]'
    print(f'[try to resume from file `{resume_from}`]')
    checkpoint = torch.load(resume_from, map_location='cpu')

    ep_start, performance_desc = checkpoint.get('epoch', -1) + 1, checkpoint.get('performance_desc',
                                                                                 '[no performance_desc]')
    missing, unexpected = model_without_ddp.load_state_dict(checkpoint.get('module', checkpoint), strict=False)
    print(f'[load_checkpoint] missing_keys={missing}')
    print(f'[load_checkpoint] unexpected_keys={unexpected}')
    print(f'[load_checkpoint] ep_start={ep_start}, performance_desc={performance_desc}')

    if 'optimizer' in checkpoint:
        optimizer.load_state_dict(checkpoint['optimizer'])
    return ep_start, performance_desc


class SmoothedValue(object):
    """Track a series of values and provide access to smoothed values over a

    window or the global series average.

    """

    def __init__(self, window_size=20, fmt=None):
        if fmt is None:
            fmt = "{median:.4f} ({global_avg:.4f})"
        self.deque = deque(maxlen=window_size)
        self.total = 0.0
        self.count = 0
        self.fmt = fmt

    def update(self, value, n=1):
        self.deque.append(value)
        self.count += n
        self.total += value * n

    def synchronize_between_processes(self):
        """

        Warning: does not synchronize the deque!

        """
        t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda')
        dist.barrier()
        dist.allreduce(t)
        t = t.tolist()
        self.count = int(t[0])
        self.total = t[1]

    @property
    def median(self):
        d = torch.tensor(list(self.deque))
        return d.median().item()

    @property
    def avg(self):
        d = torch.tensor(list(self.deque), dtype=torch.float32)
        return d.mean().item()

    @property
    def global_avg(self):
        return self.total / self.count

    @property
    def max(self):
        return max(self.deque)

    @property
    def value(self):
        return self.deque[-1]

    def __str__(self):
        return self.fmt.format(
            median=self.median,
            avg=self.avg,
            global_avg=self.global_avg,
            max=self.max,
            value=self.value)


class MetricLogger(object):
    def __init__(self, delimiter="\t"):
        self.meters = defaultdict(SmoothedValue)
        self.delimiter = delimiter

    def update(self, **kwargs):
        for k, v in kwargs.items():
            if v is None:
                continue
            if isinstance(v, torch.Tensor):
                v = v.item()
            assert isinstance(v, (float, int))
            self.meters[k].update(v)

    def __getattr__(self, attr):
        if attr in self.meters:
            return self.meters[attr]
        if attr in self.__dict__:
            return self.__dict__[attr]
        raise AttributeError("'{}' object has no attribute '{}'".format(
            type(self).__name__, attr))

    def __str__(self):
        loss_str = []
        for name, meter in self.meters.items():
            loss_str.append(
                "{}: {}".format(name, str(meter))
            )
        return self.delimiter.join(loss_str)

    def synchronize_between_processes(self):
        for meter in self.meters.values():
            meter.synchronize_between_processes()

    def add_meter(self, name, meter):
        self.meters[name] = meter

    def log_every(self, max_iters, itrt, print_freq, header=None):
        print_iters = set(np.linspace(0, max_iters - 1, print_freq, dtype=int).tolist())
        if not header:
            header = ''
        start_time = time.time()
        end = time.time()
        self.iter_time = SmoothedValue(fmt='{avg:.4f}')
        self.data_time = SmoothedValue(fmt='{avg:.4f}')
        space_fmt = ':' + str(len(str(max_iters))) + 'd'
        log_msg = [
            header,
            '[{0' + space_fmt + '}/{1}]',
            'eta: {eta}',
            '{meters}',
            'iter: {time}s',
            'data: {data}s'
        ]
        log_msg = self.delimiter.join(log_msg)

        if isinstance(itrt, Iterator) and not hasattr(itrt, 'preload') and not hasattr(itrt, 'set_epoch'):
            for i in range(max_iters):
                obj = next(itrt)
                self.data_time.update(time.time() - end)
                yield obj
                self.iter_time.update(time.time() - end)
                if i in print_iters:
                    eta_seconds = self.iter_time.global_avg * (max_iters - i)
                    eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
                    print(log_msg.format(
                        i, max_iters, eta=eta_string,
                        meters=str(self),
                        time=str(self.iter_time), data=str(self.data_time)))
                end = time.time()
        else:
            for i, obj in enumerate(itrt):
                self.data_time.update(time.time() - end)
                yield obj
                self.iter_time.update(time.time() - end)
                if i in print_iters:
                    eta_seconds = self.iter_time.global_avg * (max_iters - i)
                    eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
                    print(log_msg.format(
                        i, max_iters, eta=eta_string,
                        meters=str(self),
                        time=str(self.iter_time), data=str(self.data_time)))
                end = time.time()

        total_time = time.time() - start_time
        total_time_str = str(datetime.timedelta(seconds=int(total_time)))
        print('{}   Total time:      {}   ({:.3f} s / it)'.format(
            header, total_time_str, total_time / max_iters))