MambaMIM / models /encoder.py
FengheTan9's picture
Upload folder using huggingface_hub
6da2a44 verified
import torch
import torch.nn as nn
from timm.models.layers import DropPath
_cur_active: torch.Tensor = None # B1fff
# todo: try to use `gather` for speed?
def _get_active_ex_or_ii(H, W, D, returning_active_ex=True):
h_repeat, w_repeat, d_repeat = H // _cur_active.shape[-3], W // _cur_active.shape[-2], D // _cur_active.shape[-1]
active_ex = _cur_active.repeat_interleave(h_repeat, dim=2).repeat_interleave(w_repeat, dim=3).repeat_interleave(d_repeat, dim=4)
return active_ex if returning_active_ex else active_ex.squeeze(1).nonzero(as_tuple=True) # ii: bi, hi, wi
def sp_conv_forward(self, x: torch.Tensor):
x = super(type(self), self).forward(x)
x *= _get_active_ex_or_ii(H=x.shape[2], W=x.shape[3], D=x.shape[4], returning_active_ex=True) # (BCHW) *= (B1HW), mask the output of conv
return x
def sp_bn_forward(self, x: torch.Tensor):
ii = _get_active_ex_or_ii(H=x.shape[2], W=x.shape[3], D=x.shape[4], returning_active_ex=False)
bhwdc = x.permute(0, 2, 3, 4, 1)
nc = bhwdc[ii] # select the features on non-masked positions to form a flatten feature `nc`
nc = super(type(self), self).forward(nc) # use BN1d to normalize this flatten feature `nc`
bchwd = torch.zeros_like(bhwdc)
bchwd[ii] = nc
bchwd = bchwd.permute(0, 4, 1, 2, 3)
return bchwd
def sp_in_forward(self, x: torch.Tensor):
ii = _get_active_ex_or_ii(H=x.shape[2], W=x.shape[3], D=x.shape[4], returning_active_ex=False)
bhwdc = x.permute(0, 2, 3, 4, 1)
cn = bhwdc[ii].permute(1,
0) # select the features on non-masked positions to form a flatten feature `nc` [17787, 3]
C, N = cn.shape
bcl = cn.reshape(C, -1, x.shape[0]).permute(2, 0, 1)
bcl = super(type(self), self).forward(bcl) # use BN1d to normalize this flatten feature `nc`
nc = bcl.permute(1, 2, 0).reshape(C, -1).permute(1, 0)
bchwd = torch.zeros_like(bhwdc)
bchwd[ii] = nc
bchwd = bchwd.permute(0, 4, 1, 2, 3)
return bchwd
class SparseConv3d(nn.Conv3d):
forward = sp_conv_forward # hack: override the forward function; see `sp_conv_forward` above for more details
class SparseMaxPooling(nn.MaxPool3d):
forward = sp_conv_forward # hack: override the forward function; see `sp_conv_forward` above for more details
class SparseAvgPooling(nn.AvgPool3d):
forward = sp_conv_forward # hack: override the forward function; see `sp_conv_forward` above for more details
class SparseBatchNorm3d(nn.BatchNorm1d):
forward = sp_bn_forward # hack: override the forward function; see `sp_bn_forward` above for more details
class SparseSyncBatchNorm3d(nn.SyncBatchNorm):
forward = sp_bn_forward # hack: override the forward function; see `sp_bn_forward` above for more details
class SparseInstanceNorm3d(nn.InstanceNorm1d):
forward = sp_in_forward # hack: override the forward function; see `sp_bn_forward` above for more details
class SparseConvNeXtLayerNorm(nn.LayerNorm):
r""" LayerNorm that supports two data formats: channels_last (default) or channels_first.
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
shape (batch_size, height, width, channels) while channels_first corresponds to inputs
with shape (batch_size, channels, height, width).
"""
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last", sparse=True):
if data_format not in ["channels_last", "channels_first"]:
raise NotImplementedError
super().__init__(normalized_shape, eps, elementwise_affine=True)
self.data_format = data_format
self.sparse = sparse
def forward(self, x):
if x.ndim == 5: # BHWDC or BCHWD
if self.data_format == "channels_last": # BHWDC
if self.sparse:
ii = _get_active_ex_or_ii(H=x.shape[1], W=x.shape[2], D=x.shape[3], returning_active_ex=False)
nc = x[ii]
nc = super(SparseConvNeXtLayerNorm, self).forward(nc)
x = torch.zeros_like(x)
x[ii] = nc
return x
else:
return super(SparseConvNeXtLayerNorm, self).forward(x)
else: # channels_first, BCHWD
if self.sparse:
ii = _get_active_ex_or_ii(H=x.shape[2], W=x.shape[3], D=x.shape[4], returning_active_ex=False)
bhwc = x.permute(0, 2, 3, 4, 1)
nc = bhwc[ii]
nc = super(SparseConvNeXtLayerNorm, self).forward(nc)
x = torch.zeros_like(bhwc)
x[ii] = nc
return x.permute(0, 4, 1, 2, 3)
else:
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
x = self.weight[:, None, None, None] * x + self.bias[:, None, None, None]
return x
else: # BLC or BC
if self.sparse:
raise NotImplementedError
else:
return super(SparseConvNeXtLayerNorm, self).forward(x)
def __repr__(self):
return super(SparseConvNeXtLayerNorm, self).__repr__()[
:-1] + f', ch={self.data_format.split("_")[-1]}, sp={self.sparse})'
class SparseConvNeXtBlock(nn.Module):
r""" ConvNeXt Block. There are two equivalent implementations:
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
We use (2) as we find it slightly faster in PyTorch
Args:
dim (int): Number of input channels.
drop_path (float): Stochastic depth rate. Default: 0.0
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
"""
def __init__(self, in_channels, out_channels, kernel_size=7, exp_r=4, do_res=False, drop_path=0.,
layer_scale_init_value=1e-6, sparse=True):
super().__init__()
self.do_res = do_res
self.dwconv = nn.Conv3d(in_channels, in_channels, kernel_size=kernel_size, padding=kernel_size // 2,
groups=in_channels) # depthwise conv
self.norm = SparseConvNeXtLayerNorm(in_channels, eps=1e-6, sparse=sparse)
self.pwconv1 = nn.Linear(in_channels,
exp_r * in_channels) # pointwise/1x1 convs, implemented with linear layers
self.act = nn.GELU()
self.pwconv2 = nn.Linear(exp_r * in_channels, out_channels)
self.gamma = nn.Parameter(layer_scale_init_value * torch.ones((out_channels)),
requires_grad=True) if layer_scale_init_value > 0 else None
self.drop_path: nn.Module = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.sparse = sparse
def forward(self, x):
input = x
x = self.dwconv(x)
x = x.permute(0, 2, 3, 4, 1) # (N, C, H, W, D) -> (N, H, W, D, C)
x = self.norm(x)
x = self.pwconv1(x)
x = self.act(x) # GELU(0) == (0), so there is no need to mask x (no need to `x *= _get_active_ex_or_ii`)
x = self.pwconv2(x)
if self.gamma is not None:
x = self.gamma * x
x = x.permute(0, 4, 1, 2, 3) # (N, H, W, C) -> (N, C, H, W)
if self.sparse:
x *= _get_active_ex_or_ii(H=x.shape[2], W=x.shape[3], D=x.shape[4], returning_active_ex=True)
if self.do_res:
x = input + self.drop_path(x)
return x
def __repr__(self):
return super(SparseConvNeXtBlock, self).__repr__()[:-1] + f', sp={self.sparse})'
class SparseEncoder(nn.Module):
def __init__(self, encoder, input_size, sbn=False, verbose=False):
super(SparseEncoder, self).__init__()
self.embeddings = SparseEncoder.dense_model_to_sparse(m=encoder.embeddings, verbose=verbose, sbn=sbn)
self.mae = encoder.mae
# self.encoder = SparseEncoder.dense_model_to_sparse(m=encoder, verbose=verbose, sbn=sbn)
self.input_size, self.downsample_raito, self.enc_feat_map_chs = input_size, encoder.get_downsample_ratio(), encoder.get_feature_map_channels()
@staticmethod
def dense_model_to_sparse(m: nn.Module, verbose=False, sbn=False):
oup = m
if isinstance(m, nn.Conv3d):
m: nn.Conv3d
bias = m.bias is not None
oup = SparseConv3d(
m.in_channels, m.out_channels,
kernel_size=m.kernel_size, stride=m.stride, padding=m.padding,
dilation=m.dilation, groups=m.groups, bias=bias, padding_mode=m.padding_mode,
)
oup.weight.data.copy_(m.weight.data)
if bias:
oup.bias.data.copy_(m.bias.data)
elif isinstance(m, nn.MaxPool3d):
m: nn.MaxPool3d
oup = SparseMaxPooling(m.kernel_size, stride=m.stride, padding=m.padding, dilation=m.dilation,
return_indices=m.return_indices, ceil_mode=m.ceil_mode)
elif isinstance(m, nn.AvgPool3d):
m: nn.AvgPool3d
oup = SparseAvgPooling(m.kernel_size, m.stride, m.padding, ceil_mode=m.ceil_mode,
count_include_pad=m.count_include_pad, divisor_override=m.divisor_override)
elif isinstance(m, (nn.BatchNorm3d, nn.SyncBatchNorm)):
m: nn.BatchNorm3d
oup = (SparseSyncBatchNorm3d if sbn else SparseBatchNorm3d)(m.weight.shape[0], eps=m.eps,
momentum=m.momentum, affine=m.affine,
track_running_stats=m.track_running_stats)
oup.weight.data.copy_(m.weight.data)
oup.bias.data.copy_(m.bias.data)
oup.running_mean.data.copy_(m.running_mean.data)
oup.running_var.data.copy_(m.running_var.data)
oup.num_batches_tracked.data.copy_(m.num_batches_tracked.data)
if hasattr(m, "qconfig"):
oup.qconfig = m.qconfig
elif isinstance(m, nn.InstanceNorm3d):
m: nn.InstanceNorm3d
oup = SparseInstanceNorm3d(m.num_features, eps=m.eps, momentum=m.momentum, affine=m.affine,
track_running_stats=m.track_running_stats)
if hasattr(m, "qconfig"):
oup.qconfig = m.qconfig
elif isinstance(m, nn.LayerNorm) and not isinstance(m, SparseConvNeXtLayerNorm):
m: nn.LayerNorm
oup = SparseConvNeXtLayerNorm(m.weight.shape[0], eps=m.eps)
oup.weight.data.copy_(m.weight.data)
oup.bias.data.copy_(m.bias.data)
elif isinstance(m, (nn.Conv1d,)):
m: nn.Conv1d
bias = m.bias is not None
oup = nn.Conv1d(
m.in_channels, m.out_channels,
kernel_size=m.kernel_size, stride=m.stride, padding=m.padding,
dilation=m.dilation, groups=m.groups, bias=bias, padding_mode=m.padding_mode)
oup.weight.data.copy_(m.weight.data)
if bias:
oup.bias.data.copy_(m.bias.data)
for name, child in m.named_children():
oup.add_module(name, SparseEncoder.dense_model_to_sparse(child, verbose=verbose, sbn=sbn))
del m
return oup
def forward(self, x, active_b1fff):
x1, x2, x3, x4, x5 = self.embeddings(x)
_x5 = self.mae(x5, active_b1fff)
return [x1, x2, x3, x4, _x5]
if __name__ == '__main__':
x = torch.randn([1, 96, 24, 24, 24])
_cur_active = torch.randn([1, 1, 96 // 16, 96 // 16, 96 // 16])
print(x.shape)
print(_get_active_ex_or_ii(H=x.shape[2], W=x.shape[3], D=x.shape[4], returning_active_ex=True).shape)
print(x.shape)