Keye-VL-8B-Preview / image_processing_keye.py
junukwon-fai's picture
Duplicate from Kwai-Keye/Keye-VL-8B-Preview
9140675 verified
# coding=utf-8
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for Keye."""
import math
from typing import Dict, List, Optional, Union
import numpy as np
import torch
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
from torchvision.transforms import functional as TF
from transformers.image_transforms import (
convert_to_rgb,
resize,
to_channel_dimension_format,
)
from transformers.image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
PILImageResampling,
get_image_size,
infer_channel_dimension_format,
is_scaled_image,
is_valid_image,
make_list_of_images,
to_numpy_array,
valid_images,
validate_preprocess_arguments,
)
from transformers.utils import TensorType, is_vision_available, logging
logger = logging.get_logger(__name__)
if is_vision_available():
from PIL import Image
ImageInput = Union[
"PIL.Image.Image",
np.ndarray,
"torch.Tensor",
List["PIL.Image.Image"],
List[np.ndarray],
List["torch.Tensor"],
] # noqa
VideoInput = Union[
List["PIL.Image.Image"],
"np.ndarray",
"torch.Tensor",
List["np.ndarray"],
List["torch.Tensor"],
List[List["PIL.Image.Image"]],
List[List["np.ndarrray"]],
List[List["torch.Tensor"]],
] # noqa
def make_batched_images(images) -> List[List[ImageInput]]:
"""
Accepts images in list or nested list format, and makes a list of images for preprocessing.
Args:
images (`Union[List[List[ImageInput]], List[ImageInput], ImageInput]`):
The input image.
Returns:
list: A list of images.
"""
if (
isinstance(images, (list, tuple))
and isinstance(images[0], (list, tuple))
and is_valid_image(images[0][0])
):
return [img for img_list in images for img in img_list]
elif isinstance(images, (list, tuple)) and is_valid_image(images[0]):
return images
elif is_valid_image(images):
return [images]
raise ValueError(f"Could not make batched images from {images}")
def adjust_size(size, patch_size):
num_patches = size // patch_size
if num_patches % 2 != 0: # 如果是奇数,减1
num_patches -= 1
return num_patches * patch_size
def make_batched_videos(videos) -> List[VideoInput]:
if (
isinstance(videos, (list, tuple))
and isinstance(videos[0], (list, tuple))
and is_valid_image(videos[0][0])
):
return videos
elif isinstance(videos, (list, tuple)) and is_valid_image(videos[0]):
if isinstance(videos[0], Image.Image):
return [videos]
elif len(videos[0].shape) == 4:
return [list(video) for video in videos]
elif is_valid_image(videos) and len(videos.shape) == 4:
return [list(videos)]
raise ValueError(f"Could not make batched video from {videos}")
def smart_resize(
height: int,
width: int,
factor: int = 28,
min_pixels: int = 28 * 28 * 130,
max_pixels: int = 28 * 28 * 1280,
):
"""Rescales the image so that the following conditions are met:
1. Both dimensions (height and width) are divisible by 'factor'.
2. The total number of pixels is within the range ['min_pixels', 'max_pixels'].
3. The aspect ratio of the image is maintained as closely as possible.
"""
# if height < factor or width < factor:
# raise ValueError(f"height:{height} or width:{width} must be larger than factor:{factor}")
# if int(height < factor//4) + int(width < factor//4):
# raise ValueError(f"height:{height} or width:{width} must be larger than factor:{factor//4}")
if height < factor:
print(f"smart_resize: height={height} < factor={factor}, reset height=factor")
width = round((width * factor) / height)
height = factor
if width < factor:
print(f"smart_resize: width={width} < factor={factor}, reset width=factor")
height = round((height * factor) / width)
width = factor
if max(height, width) / min(height, width) > 200:
raise ValueError(
f"absolute aspect ratio must be smaller than 200, got {max(height, width) / min(height, width)}"
)
h_bar = round(height / factor) * factor
w_bar = round(width / factor) * factor
if h_bar * w_bar > max_pixels:
beta = math.sqrt((height * width) / max_pixels)
h_bar = math.floor(height / beta / factor) * factor
w_bar = math.floor(width / beta / factor) * factor
elif h_bar * w_bar < min_pixels:
beta = math.sqrt(min_pixels / (height * width))
h_bar = math.ceil(height * beta / factor) * factor
w_bar = math.ceil(width * beta / factor) * factor
return h_bar, w_bar
class SiglipImageProcessor(BaseImageProcessor):
r"""
Constructs a Siglip image processor that dynamically resizes images based on the original images.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions.
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
Resampling filter to use when resizing the image.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`):
Mean to use if normalizing the image. This is a float or list of floats for each channel in the image.
image_std (`float` or `List[float]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`):
Standard deviation to use if normalizing the image. This is a float or list of floats for each channel in the image.
do_convert_rgb (`bool`, *optional*, defaults to `True`):
Whether to convert the image to RGB.
min_pixels (`int`, *optional*, defaults to `28 * 28 * 130`):
The min pixels of the image to resize the image.
max_pixels (`int`, *optional*, defaults to `28 * 28 * 1670`):
The max pixels of the image to resize the image.
patch_size (`int`, *optional*, defaults to 14):
The spacial patch size of the vision encoder.
temporal_patch_size (`int`, *optional*, defaults to 2):
The temporal patch size of the vision encoder.
merge_size (`int`, *optional*, defaults to 2):
The merge size of the vision encoder to llm encoder.
"""
model_input_names = [
"pixel_values",
"image_grid_thw",
"pixel_values_videos",
"video_grid_thw",
]
def __init__(
self,
do_resize: bool = True,
resample: PILImageResampling = PILImageResampling.BICUBIC,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_convert_rgb: bool = True,
min_pixels: int = 28 * 28 * 130,
max_pixels: int = 28 * 28 * 1280,
patch_size: int = 14,
temporal_patch_size: int = 1,
merge_size: int = 2,
**kwargs,
) -> None:
super().__init__(**kwargs)
self.do_resize = do_resize
self.resample = resample
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
self.min_pixels = min_pixels
self.max_pixels = max_pixels
self.patch_size = patch_size
self.temporal_patch_size = temporal_patch_size
self.merge_size = merge_size
self.size = {"min_pixels": min_pixels, "max_pixels": max_pixels} # not used
self.do_convert_rgb = do_convert_rgb
def mvit_rescale(self, image: Image.Image, merge_size: int = 2) -> Image.Image:
try:
w, h = image.size
except:
raise ValueError(str((type(image), image)))
patch_size = self.patch_size
if (w // patch_size) * (h // patch_size) > self.in_token_limit:
scale = math.sqrt(
self.in_token_limit / ((w // patch_size) * (h // patch_size))
)
new_w, new_h = int(w * scale), int(h * scale)
image = image.resize((new_w, new_h), Image.Resampling.BICUBIC)
if self.pad_input:
new_w, new_h = image.size
pad_size_h = merge_size * patch_size
pad_size_w = merge_size * patch_size
pad_h = (pad_size_h - new_h % pad_size_h) % pad_size_h
pad_w = (pad_size_w - new_w % pad_size_w) % pad_size_w
image = TF.pad(image, (0, 0, pad_w, pad_h))
else:
new_w, new_h = image.size
new_w = new_w - new_w % patch_size
new_h = new_h - new_h % patch_size
new_w = adjust_size(new_w, patch_size)
new_h = adjust_size(new_h, patch_size)
image = TF.center_crop(image, (new_h, new_w))
w, h = image.size
if w // patch_size >= 512 or h // patch_size >= 512:
new_h = min(patch_size * 510, h)
new_w = min(patch_size * 510, w)
image = TF.center_crop(image, (new_h, new_w))
# raise ValueError("Exceed pos emb")
return image
def _preprocess(
self,
images: Union[ImageInput, VideoInput],
do_resize: bool = None,
resample: PILImageResampling = None,
do_rescale: bool = None,
rescale_factor: float = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_convert_rgb: bool = None,
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
):
"""
Preprocess an image or batch of images. Copy of the `preprocess` method from `CLIPImageProcessor`.
Args:
images (`ImageInput`):
Image or batch of images to preprocess. Expects pixel values ranging from 0 to 255. If pixel values range from 0 to 1, set `do_rescale=False`.
vision_info (`List[Dict]`, *optional*):
Optional list of dictionaries containing additional information about vision inputs.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
Resampling filter to use if resizing the image. This can be one of the `PILImageResampling` enums.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image.
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Scale factor to use if rescaling the image.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Mean to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Standard deviation to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image.
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
Whether to convert the image to RGB.
data_format (`ChannelDimension`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
images = make_list_of_images(images)
if do_convert_rgb:
images = [convert_to_rgb(image) for image in images]
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if is_scaled_image(images[0]) and do_rescale:
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
height, width = get_image_size(images[0], channel_dim=input_data_format)
resized_height, resized_width = height, width
processed_images = []
for image in images:
if do_resize:
resized_height, resized_width = smart_resize(
height,
width,
factor=self.patch_size * self.merge_size,
min_pixels=self.min_pixels,
max_pixels=self.max_pixels,
)
image = resize(
image,
size=(resized_height, resized_width),
resample=resample,
input_data_format=input_data_format,
)
if do_rescale:
image = self.rescale(
image, scale=rescale_factor, input_data_format=input_data_format
)
if do_normalize:
image = self.normalize(
image=image,
mean=image_mean,
std=image_std,
input_data_format=input_data_format,
)
image = to_channel_dimension_format(
image, data_format, input_channel_dim=input_data_format
)
processed_images.append(image)
patches = np.array(processed_images)
if data_format == ChannelDimension.LAST:
patches = patches.transpose(0, 3, 1, 2)
if patches.shape[0] == 1:
patches = np.tile(patches, (self.temporal_patch_size, 1, 1, 1))
init_patches = patches
channel = patches.shape[1]
grid_t = patches.shape[0] // self.temporal_patch_size
grid_h, grid_w = (
resized_height // self.patch_size,
resized_width // self.patch_size,
)
patches = patches.reshape(
grid_t,
self.temporal_patch_size,
channel,
grid_h,
self.patch_size,
grid_w,
self.patch_size,
)
patches = patches.transpose(0, 3, 5, 2, 1, 4, 6)
assert self.temporal_patch_size == 1
flatten_patches = patches.reshape(
grid_t * grid_h * grid_w, channel, self.patch_size, self.patch_size
)
return flatten_patches, (grid_t, grid_h, grid_w)
def preprocess(
self,
images: ImageInput,
videos: VideoInput = None,
do_resize: bool = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_rescale: bool = None,
rescale_factor: float = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_convert_rgb: bool = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
):
"""
Args:
images (`ImageInput`):
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
videos (`VideoInput`):
Video to preprocess. Expects a single or batch of videos with pixel values ranging from 0 to 255. If
passing in videos with pixel values between 0 and 1, set `do_rescale=False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with
the longest edge resized to keep the input aspect ratio.
resample (`int`, *optional*, defaults to `self.resample`):
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
has an effect if `do_resize` is set to `True`.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image.
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
`True`.
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
Whether to convert the image to RGB.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
size = size if size is not None else self.size
resample = resample if resample is not None else self.resample
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = (
rescale_factor if rescale_factor is not None else self.rescale_factor
)
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
do_convert_rgb = (
do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
)
if images is not None:
images = make_batched_images(images)
if videos is not None:
videos = make_batched_videos(videos)
if images is not None and not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
validate_preprocess_arguments(
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
do_resize=do_resize,
size=size,
resample=resample,
)
if images is not None:
pixel_values, vision_grid_thws = [], []
for image in images:
patches, image_grid_thw = self._preprocess(
image,
do_resize=do_resize,
resample=resample,
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
data_format=data_format,
do_convert_rgb=do_convert_rgb,
input_data_format=input_data_format,
)
pixel_values.extend(patches)
vision_grid_thws.append(image_grid_thw)
pixel_values = np.array(pixel_values)
vision_grid_thws = np.array(vision_grid_thws)
data = {"pixel_values": pixel_values, "image_grid_thw": vision_grid_thws}
if videos is not None:
pixel_values, vision_grid_thws = [], []
for images in videos:
patches, video_grid_thw = self._preprocess(
images,
do_resize=do_resize,
resample=resample,
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
data_format=data_format,
do_convert_rgb=do_convert_rgb,
input_data_format=input_data_format,
)
pixel_values.extend(patches)
vision_grid_thws.append(video_grid_thw)
pixel_values = np.array(pixel_values)
vision_grid_thws = np.array(vision_grid_thws)
data = {
"pixel_values_videos": pixel_values,
"video_grid_thw": vision_grid_thws,
}
return BatchFeature(data=data, tensor_type=return_tensors)