Keye-VL-8B-Preview / processing_keye.py
junukwon-fai's picture
Duplicate from Kwai-Keye/Keye-VL-8B-Preview
9140675 verified
# coding=utf-8
# Copyright 2025 The Keye Team and The HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Union
import numpy as np
from transformers.feature_extraction_utils import BatchFeature
from transformers.processing_utils import (
ProcessingKwargs,
ProcessorMixin,
Unpack,
VideosKwargs,
)
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
import torch
ImageInput = Union[
"PIL.Image.Image",
np.ndarray,
"torch.Tensor",
List["PIL.Image.Image"],
List[np.ndarray],
List["torch.Tensor"],
] # noqa
VideoInput = Union[
List["PIL.Image.Image"],
"np.ndarray",
"torch.Tensor",
List["np.ndarray"],
List["torch.Tensor"],
List[List["PIL.Image.Image"]],
List[List["np.ndarrray"]],
List[List["torch.Tensor"]],
] # noqa
class KeyeVideosProcessorKwargs(VideosKwargs, total=False):
fps: Union[List[float], float]
class KeyeProcessorKwargs(ProcessingKwargs, total=False):
videos_kwargs: KeyeVideosProcessorKwargs
_defaults = {
"text_kwargs": {
"padding": False,
},
"videos_kwargs": {"fps": 2.0},
}
class KeyeProcessor(ProcessorMixin):
r"""
[`KeyeProcessor`] offers all the functionalities of [`SiglipImageProcessor`] and [`Qwen2TokenizerFast`]. See the
[`~KeyeProcessor.__call__`] and [`~KeyeProcessor.decode`] for more information.
Args:
image_processor ([`SiglipImageProcessor`], *optional*):
The image processor is a required input.
tokenizer ([`Qwen2TokenizerFast`], *optional*):
The tokenizer is a required input.
chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
in a chat into a tokenizable string.
"""
attributes = ["image_processor", "tokenizer"]
valid_kwargs = [
"chat_template",
"image_std",
"min_pixels",
"image_mean",
"merge_size",
"image_processor_type",
"temporal_patch_size",
"patch_size",
"max_pixels",
]
image_processor_class = "AutoImageProcessor"
tokenizer_class = ("Qwen2Tokenizer", "Qwen2TokenizerFast")
def __init__(
self, image_processor=None, tokenizer=None, chat_template=None, **kwargs
):
self.image_token = (
"<|image_pad|>"
if not hasattr(tokenizer, "image_token")
else tokenizer.image_token
)
self.video_token = (
"<|video_pad|>"
if not hasattr(tokenizer, "video_token")
else tokenizer.video_token
)
super().__init__(image_processor, tokenizer, chat_template=chat_template)
def __call__(
self,
images: ImageInput = None,
text: Union[
TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]
] = None,
videos: VideoInput = None,
**kwargs: Unpack[KeyeProcessorKwargs],
) -> BatchFeature:
"""
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
and `kwargs` arguments to Qwen2TokenizerFast's [`~Qwen2TokenizerFast.__call__`] if `text` is not `None` to encode
the text. To prepare the vision inputs, this method forwards the `vision_infos` and `kwrags` arguments to
SiglipImageProcessor's [`~SiglipImageProcessor.__call__`] if `vision_infos` is not `None`.
Args:
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. Both channels-first and channels-last formats are supported.
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
videos (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of videos to be prepared. Each video can be a 4D NumPy array or PyTorch
tensor, or a nested list of 3D frames. Both channels-first and channels-last formats are supported.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
- **pixel_values_videos** -- Pixel values of videos to be fed to a model. Returned when `videos` is not `None`.
- **image_grid_thw** -- List of image 3D grid in LLM. Returned when `images` is not `None`.
- **video_grid_thw** -- List of video 3D grid in LLM. Returned when `videos` is not `None`.
- **second_per_grid_ts** -- List of video seconds per time grid. Returned when `videos` is not `None`.
"""
output_kwargs = self._merge_kwargs(
KeyeProcessorKwargs,
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
**kwargs,
)
if images is not None:
image_inputs = self.image_processor(images=images, return_tensors="pt")
image_inputs["pixel_values"] = image_inputs["pixel_values"]
image_grid_thw = image_inputs["image_grid_thw"]
else:
image_inputs = {}
image_grid_thw = None
if videos is not None:
# TODO: add video processing
videos_inputs = self.image_processor(
images=None, videos=videos, **output_kwargs["images_kwargs"]
)
video_grid_thw = videos_inputs["video_grid_thw"]
fps = output_kwargs["videos_kwargs"].pop("fps", 2.0)
if isinstance(fps, (int, float)):
second_per_grid_ts = [
self.image_processor.temporal_patch_size / fps
] * len(video_grid_thw)
elif hasattr(fps, "__len__") and len(fps) == len(video_grid_thw):
second_per_grid_ts = [
self.image_processor.temporal_patch_size / tmp for tmp in fps
]
else:
raise ValueError(
f"The length of fps ({len(fps) if hasattr(fps, '__len__') else fps}) must be equal to the length of video_grid_thw ({len(video_grid_thw)}) or fps should be a single number."
)
videos_inputs.update(
{"second_per_grid_ts": torch.tensor(second_per_grid_ts)}
)
else:
videos_inputs = {}
video_grid_thw = None
if not isinstance(text, list):
text = [text]
if image_grid_thw is not None:
index = 0
for i in range(len(text)):
while self.image_token in text[i]:
text[i] = text[i].replace(
self.image_token,
"<|placeholder|>"
* (
image_grid_thw[index].prod()
// self.image_processor.merge_size
// self.image_processor.merge_size
),
1,
)
index += 1
text[i] = text[i].replace("<|placeholder|>", self.image_token)
if video_grid_thw is not None:
index = 0
for i in range(len(text)):
while self.video_token in text[i]:
text[i] = text[i].replace(
self.video_token,
"<|placeholder|>"
* (
video_grid_thw[index].prod()
// self.image_processor.merge_size
// self.image_processor.merge_size
),
1,
)
index += 1
text[i] = text[i].replace("<|placeholder|>", self.video_token)
text_inputs = self.tokenizer(text, **output_kwargs["text_kwargs"])
return BatchFeature(data={**text_inputs, **image_inputs, **videos_inputs})
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
def post_process_image_text_to_text(
self,
generated_outputs,
skip_special_tokens=True,
clean_up_tokenization_spaces=False,
**kwargs,
):
"""
Post-process the output of the model to decode the text.
Args:
generated_outputs (`torch.Tensor` or `np.ndarray`):
The output of the model `generate` function. The output is expected to be a tensor of shape `(batch_size, sequence_length)`
or `(sequence_length,)`.
skip_special_tokens (`bool`, *optional*, defaults to `True`):
Whether or not to remove special tokens in the output. Argument passed to the tokenizer's `batch_decode` method.
Clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
Whether or not to clean up the tokenization spaces. Argument passed to the tokenizer's `batch_decode` method.
**kwargs:
Additional arguments to be passed to the tokenizer's `batch_decode method`.
Returns:
`List[str]`: The decoded text.
"""
return self.tokenizer.batch_decode(
generated_outputs,
skip_special_tokens=skip_special_tokens,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
**kwargs,
)
@property
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
names_from_processor = list(
dict.fromkeys(tokenizer_input_names + image_processor_input_names)
)
return names_from_processor + ["second_per_grid_ts"]
__all__ = ["KeyeProcessor", "KeyeProcessor_moonvit", "KeyeProcessor"]