|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import List, Union |
|
import numpy as np |
|
from transformers.feature_extraction_utils import BatchFeature |
|
from transformers.processing_utils import ( |
|
ProcessingKwargs, |
|
ProcessorMixin, |
|
Unpack, |
|
VideosKwargs, |
|
) |
|
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput |
|
import torch |
|
|
|
|
|
ImageInput = Union[ |
|
"PIL.Image.Image", |
|
np.ndarray, |
|
"torch.Tensor", |
|
List["PIL.Image.Image"], |
|
List[np.ndarray], |
|
List["torch.Tensor"], |
|
] |
|
|
|
|
|
VideoInput = Union[ |
|
List["PIL.Image.Image"], |
|
"np.ndarray", |
|
"torch.Tensor", |
|
List["np.ndarray"], |
|
List["torch.Tensor"], |
|
List[List["PIL.Image.Image"]], |
|
List[List["np.ndarrray"]], |
|
List[List["torch.Tensor"]], |
|
] |
|
|
|
|
|
class KeyeVideosProcessorKwargs(VideosKwargs, total=False): |
|
fps: Union[List[float], float] |
|
|
|
|
|
class KeyeProcessorKwargs(ProcessingKwargs, total=False): |
|
videos_kwargs: KeyeVideosProcessorKwargs |
|
_defaults = { |
|
"text_kwargs": { |
|
"padding": False, |
|
}, |
|
"videos_kwargs": {"fps": 2.0}, |
|
} |
|
|
|
|
|
class KeyeProcessor(ProcessorMixin): |
|
r""" |
|
[`KeyeProcessor`] offers all the functionalities of [`SiglipImageProcessor`] and [`Qwen2TokenizerFast`]. See the |
|
[`~KeyeProcessor.__call__`] and [`~KeyeProcessor.decode`] for more information. |
|
Args: |
|
image_processor ([`SiglipImageProcessor`], *optional*): |
|
The image processor is a required input. |
|
tokenizer ([`Qwen2TokenizerFast`], *optional*): |
|
The tokenizer is a required input. |
|
chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages |
|
in a chat into a tokenizable string. |
|
""" |
|
|
|
attributes = ["image_processor", "tokenizer"] |
|
valid_kwargs = [ |
|
"chat_template", |
|
"image_std", |
|
"min_pixels", |
|
"image_mean", |
|
"merge_size", |
|
"image_processor_type", |
|
"temporal_patch_size", |
|
"patch_size", |
|
"max_pixels", |
|
] |
|
|
|
image_processor_class = "AutoImageProcessor" |
|
tokenizer_class = ("Qwen2Tokenizer", "Qwen2TokenizerFast") |
|
|
|
def __init__( |
|
self, image_processor=None, tokenizer=None, chat_template=None, **kwargs |
|
): |
|
self.image_token = ( |
|
"<|image_pad|>" |
|
if not hasattr(tokenizer, "image_token") |
|
else tokenizer.image_token |
|
) |
|
self.video_token = ( |
|
"<|video_pad|>" |
|
if not hasattr(tokenizer, "video_token") |
|
else tokenizer.video_token |
|
) |
|
super().__init__(image_processor, tokenizer, chat_template=chat_template) |
|
|
|
def __call__( |
|
self, |
|
images: ImageInput = None, |
|
text: Union[ |
|
TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput] |
|
] = None, |
|
videos: VideoInput = None, |
|
**kwargs: Unpack[KeyeProcessorKwargs], |
|
) -> BatchFeature: |
|
""" |
|
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text` |
|
and `kwargs` arguments to Qwen2TokenizerFast's [`~Qwen2TokenizerFast.__call__`] if `text` is not `None` to encode |
|
the text. To prepare the vision inputs, this method forwards the `vision_infos` and `kwrags` arguments to |
|
SiglipImageProcessor's [`~SiglipImageProcessor.__call__`] if `vision_infos` is not `None`. |
|
|
|
Args: |
|
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): |
|
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch |
|
tensor. Both channels-first and channels-last formats are supported. |
|
text (`str`, `List[str]`, `List[List[str]]`): |
|
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings |
|
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set |
|
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences). |
|
videos (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`): |
|
The image or batch of videos to be prepared. Each video can be a 4D NumPy array or PyTorch |
|
tensor, or a nested list of 3D frames. Both channels-first and channels-last formats are supported. |
|
return_tensors (`str` or [`~utils.TensorType`], *optional*): |
|
If set, will return tensors of a particular framework. Acceptable values are: |
|
- `'tf'`: Return TensorFlow `tf.constant` objects. |
|
- `'pt'`: Return PyTorch `torch.Tensor` objects. |
|
- `'np'`: Return NumPy `np.ndarray` objects. |
|
- `'jax'`: Return JAX `jnp.ndarray` objects. |
|
|
|
Returns: |
|
[`BatchFeature`]: A [`BatchFeature`] with the following fields: |
|
|
|
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. |
|
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when |
|
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not |
|
`None`). |
|
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. |
|
- **pixel_values_videos** -- Pixel values of videos to be fed to a model. Returned when `videos` is not `None`. |
|
- **image_grid_thw** -- List of image 3D grid in LLM. Returned when `images` is not `None`. |
|
- **video_grid_thw** -- List of video 3D grid in LLM. Returned when `videos` is not `None`. |
|
- **second_per_grid_ts** -- List of video seconds per time grid. Returned when `videos` is not `None`. |
|
""" |
|
output_kwargs = self._merge_kwargs( |
|
KeyeProcessorKwargs, |
|
tokenizer_init_kwargs=self.tokenizer.init_kwargs, |
|
**kwargs, |
|
) |
|
|
|
if images is not None: |
|
image_inputs = self.image_processor(images=images, return_tensors="pt") |
|
image_inputs["pixel_values"] = image_inputs["pixel_values"] |
|
image_grid_thw = image_inputs["image_grid_thw"] |
|
|
|
else: |
|
image_inputs = {} |
|
image_grid_thw = None |
|
|
|
if videos is not None: |
|
|
|
videos_inputs = self.image_processor( |
|
images=None, videos=videos, **output_kwargs["images_kwargs"] |
|
) |
|
video_grid_thw = videos_inputs["video_grid_thw"] |
|
|
|
fps = output_kwargs["videos_kwargs"].pop("fps", 2.0) |
|
if isinstance(fps, (int, float)): |
|
second_per_grid_ts = [ |
|
self.image_processor.temporal_patch_size / fps |
|
] * len(video_grid_thw) |
|
elif hasattr(fps, "__len__") and len(fps) == len(video_grid_thw): |
|
second_per_grid_ts = [ |
|
self.image_processor.temporal_patch_size / tmp for tmp in fps |
|
] |
|
else: |
|
raise ValueError( |
|
f"The length of fps ({len(fps) if hasattr(fps, '__len__') else fps}) must be equal to the length of video_grid_thw ({len(video_grid_thw)}) or fps should be a single number." |
|
) |
|
videos_inputs.update( |
|
{"second_per_grid_ts": torch.tensor(second_per_grid_ts)} |
|
) |
|
|
|
else: |
|
videos_inputs = {} |
|
video_grid_thw = None |
|
|
|
if not isinstance(text, list): |
|
text = [text] |
|
|
|
if image_grid_thw is not None: |
|
index = 0 |
|
for i in range(len(text)): |
|
while self.image_token in text[i]: |
|
text[i] = text[i].replace( |
|
self.image_token, |
|
"<|placeholder|>" |
|
* ( |
|
image_grid_thw[index].prod() |
|
// self.image_processor.merge_size |
|
// self.image_processor.merge_size |
|
), |
|
1, |
|
) |
|
index += 1 |
|
text[i] = text[i].replace("<|placeholder|>", self.image_token) |
|
|
|
if video_grid_thw is not None: |
|
index = 0 |
|
for i in range(len(text)): |
|
while self.video_token in text[i]: |
|
text[i] = text[i].replace( |
|
self.video_token, |
|
"<|placeholder|>" |
|
* ( |
|
video_grid_thw[index].prod() |
|
// self.image_processor.merge_size |
|
// self.image_processor.merge_size |
|
), |
|
1, |
|
) |
|
index += 1 |
|
text[i] = text[i].replace("<|placeholder|>", self.video_token) |
|
|
|
text_inputs = self.tokenizer(text, **output_kwargs["text_kwargs"]) |
|
|
|
return BatchFeature(data={**text_inputs, **image_inputs, **videos_inputs}) |
|
|
|
def batch_decode(self, *args, **kwargs): |
|
""" |
|
This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please |
|
refer to the docstring of this method for more information. |
|
""" |
|
return self.tokenizer.batch_decode(*args, **kwargs) |
|
|
|
def decode(self, *args, **kwargs): |
|
""" |
|
This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to |
|
the docstring of this method for more information. |
|
""" |
|
return self.tokenizer.decode(*args, **kwargs) |
|
|
|
def post_process_image_text_to_text( |
|
self, |
|
generated_outputs, |
|
skip_special_tokens=True, |
|
clean_up_tokenization_spaces=False, |
|
**kwargs, |
|
): |
|
""" |
|
Post-process the output of the model to decode the text. |
|
|
|
Args: |
|
generated_outputs (`torch.Tensor` or `np.ndarray`): |
|
The output of the model `generate` function. The output is expected to be a tensor of shape `(batch_size, sequence_length)` |
|
or `(sequence_length,)`. |
|
skip_special_tokens (`bool`, *optional*, defaults to `True`): |
|
Whether or not to remove special tokens in the output. Argument passed to the tokenizer's `batch_decode` method. |
|
Clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`): |
|
Whether or not to clean up the tokenization spaces. Argument passed to the tokenizer's `batch_decode` method. |
|
**kwargs: |
|
Additional arguments to be passed to the tokenizer's `batch_decode method`. |
|
|
|
Returns: |
|
`List[str]`: The decoded text. |
|
""" |
|
return self.tokenizer.batch_decode( |
|
generated_outputs, |
|
skip_special_tokens=skip_special_tokens, |
|
clean_up_tokenization_spaces=clean_up_tokenization_spaces, |
|
**kwargs, |
|
) |
|
|
|
@property |
|
def model_input_names(self): |
|
tokenizer_input_names = self.tokenizer.model_input_names |
|
image_processor_input_names = self.image_processor.model_input_names |
|
names_from_processor = list( |
|
dict.fromkeys(tokenizer_input_names + image_processor_input_names) |
|
) |
|
return names_from_processor + ["second_per_grid_ts"] |
|
|
|
|
|
__all__ = ["KeyeProcessor", "KeyeProcessor_moonvit", "KeyeProcessor"] |
|
|