# coding=utf-8 # Copyright 2025 The Keye Team and The HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import numpy as np from dataclasses import dataclass from typing import Any, Dict, List, Optional, Tuple, Union import torch.distributed as dist import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import CrossEntropyLoss from transformers.activations import ACT2FN from transformers.cache_utils import Cache, DynamicCache, SlidingWindowCache, StaticCache from transformers.generation import GenerationMixin from transformers.modeling_attn_mask_utils import AttentionMaskConverter from transformers.modeling_outputs import BaseModelOutputWithPast, BaseModelOutput, BaseModelOutputWithPooling from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS from transformers.modeling_utils import PreTrainedModel, sdpa_attention_forward from transformers.activations import GELUActivation, ACT2FN, PytorchGELUTanh from transformers.utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, is_flash_attn_2_available, logging, replace_return_docstrings, torch_int, is_flash_attn_greater_or_equal_2_10 ) from .configuration_keye import KeyeConfig, KeyeVisionConfig import warnings from typing import Any, Callable, Optional, Tuple, Union, List from torch import nn from torch.nn.init import _calculate_fan_in_and_fan_out from einops import repeat if is_flash_attn_2_available(): from flash_attn import flash_attn_varlen_func from flash_attn.layers.rotary import apply_rotary_emb from transformers.modeling_flash_attention_utils import _flash_attention_forward else: flash_attn_varlen_func = None apply_rotary_emb = None logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "KeyeConfig" class KeyeMLP(nn.Module): def __init__(self, config, bias: bool = False): super().__init__() self.hidden_size = config.hidden_size self.intermediate_size = config.intermediate_size self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=bias) self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=bias) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=bias) self.act_fn = ACT2FN[config.hidden_act] def forward(self, hidden_state): return self.down_proj(self.act_fn(self.gate_proj(hidden_state)) * self.up_proj(hidden_state)) def _trunc_normal_(tensor, mean, std, a, b): # Cut & paste from PyTorch official master until it's in a few official releases - RW # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf def norm_cdf(x): # Computes standard normal cumulative distribution function return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0 if (mean < a - 2 * std) or (mean > b + 2 * std): warnings.warn( "mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " "The distribution of values may be incorrect.", stacklevel=2, ) # Values are generated by using a truncated uniform distribution and # then using the inverse CDF for the normal distribution. # Get upper and lower cdf values l = norm_cdf((a - mean) / std) u = norm_cdf((b - mean) / std) # Uniformly fill tensor with values from [l, u], then translate to # [2l-1, 2u-1]. tensor.uniform_(2 * l - 1, 2 * u - 1) # Use inverse cdf transform for normal distribution to get truncated # standard normal tensor.erfinv_() # Transform to proper mean, std tensor.mul_(std * math.sqrt(2.0)) tensor.add_(mean) # Clamp to ensure it's in the proper range tensor.clamp_(min=a, max=b) def trunc_normal_tf_( tensor: torch.Tensor, mean: float = 0.0, std: float = 1.0, a: float = -2.0, b: float = 2.0 ) -> torch.Tensor: """Fills the input Tensor with values drawn from a truncated normal distribution. The values are effectively drawn from the normal distribution :math:`\\mathcal{N}(\text{mean}, \text{std}^2)` with values outside :math:`[a, b]` redrawn until they are within the bounds. The method used for generating the random values works best when :math:`a \\leq \text{mean} \\leq b`. NOTE: this 'tf' variant behaves closer to Tensorflow / JAX impl where the bounds [a, b] are applied when sampling the normal distribution with mean=0, std=1.0 and the result is subsequently scaled and shifted by the mean and std args. Args: tensor: an n-dimensional `torch.Tensor` mean: the mean of the normal distribution std: the standard deviation of the normal distribution a: the minimum cutoff value b: the maximum cutoff value """ with torch.no_grad(): _trunc_normal_(tensor, 0, 1.0, a, b) tensor.mul_(std).add_(mean) def variance_scaling_(tensor, scale=1.0, mode="fan_in", distribution="normal"): fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor) if mode == "fan_in": denom = fan_in elif mode == "fan_out": denom = fan_out elif mode == "fan_avg": denom = (fan_in + fan_out) / 2 variance = scale / denom if distribution == "truncated_normal": # constant is stddev of standard normal truncated to (-2, 2) trunc_normal_tf_(tensor, std=math.sqrt(variance) / 0.87962566103423978) elif distribution == "normal": with torch.no_grad(): tensor.normal_(std=math.sqrt(variance)) elif distribution == "uniform": bound = math.sqrt(3 * variance) with torch.no_grad(): tensor.uniform_(-bound, bound) else: raise ValueError(f"invalid distribution {distribution}") def lecun_normal_(tensor): variance_scaling_(tensor, mode="fan_in", distribution="truncated_normal") def default_flax_embed_init(tensor): variance_scaling_(tensor, mode="fan_in", distribution="normal") class Projector(nn.Module): def __init__(self, text_config: KeyeConfig,vision_config: KeyeVisionConfig): super().__init__() self.text_config = text_config self.vision_config = vision_config self.merge_kernel_size = (2, 2) self.hidden_size = ( self.vision_config.hidden_size * self.merge_kernel_size[0] * self.merge_kernel_size[1] ) self.pre_norm = torch.nn.LayerNorm(self.vision_config.hidden_size, eps=1e-05) self.linear_1 = nn.Linear(self.hidden_size, self.hidden_size, bias=True) self.act = GELUActivation() self.linear_2 = nn.Linear( self.hidden_size, self.text_config.hidden_size, bias=True ) def forward(self, image_features: torch.Tensor, image_grid_thw: List[Tuple[int, int, int]]) -> torch.Tensor: m1, m2 = self.merge_kernel_size if isinstance(image_features, (list, tuple)): processed_features = list() for image_feature, image_grid in zip(image_features, image_grid_thw): image_feature = self.pre_norm(image_feature) t, h, w = image_grid from einops import rearrange image_feature = rearrange(image_feature, "(t h p1 w p2) d -> (t h w) (p1 p2 d)", t=t, h=h // m1, p1=m1, w=w // m2, p2=m2) hidden_states = self.linear_1(image_feature) hidden_states = self.act(hidden_states) hidden_states = self.linear_2(hidden_states) processed_features.append(hidden_states) return processed_features dims = image_features.shape[:-1] dim = image_features.shape[-1] image_features = image_features.view(np.prod(dims), dim) hidden_states = self.pre_norm(image_features).view(-1, self.hidden_size) hidden_states = self.linear_1(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.linear_2(hidden_states) return hidden_states.view(*dims, -1) class SiglipVisionEmbeddings(nn.Module): def __init__(self, config: KeyeVisionConfig): super().__init__() self.config = config self.embed_dim = config.hidden_size self.image_size = config.image_size self.patch_size = config.patch_size self.patch_embedding = nn.Conv2d( in_channels=config.num_channels, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size, padding="valid", ) self.num_patches = (self.image_size // self.patch_size) ** 2 self.num_positions = self.num_patches self.cache_position_embedding = dict() self.cache_position_count = dict() self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim) self.packing_position_embedding = nn.Embedding(32768, self.embed_dim) self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False) def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int, is_after_patchify: bool = False) -> torch.Tensor: """ This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution images. This method is also adapted to support torch.jit tracing and no class embeddings. Adapted from: - https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174-L194, and - https://github.com/facebookresearch/dinov2/blob/e1277af2ba9496fbadf7aec6eba56e8d882d1e35/dinov2/models/vision_transformer.py#L179-L211 """ num_positions = self.position_embedding.weight.shape[0] patch_pos_embed = self.position_embedding.weight.unsqueeze(0) dim = embeddings.shape[-1] if is_after_patchify: new_height = height new_width = width else: new_height = height // self.patch_size new_width = width // self.patch_size sqrt_num_positions = torch_int(num_positions**0.5) patch_pos_embed = patch_pos_embed.reshape(1, sqrt_num_positions, sqrt_num_positions, dim) patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2) patch_pos_embed = nn.functional.interpolate( patch_pos_embed, size=(new_height, new_width), mode="bilinear", align_corners=False, ) patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) return patch_pos_embed @staticmethod def flatten_list(image_grid_thw): tmp_image_grid_thw = list() for image_grid in image_grid_thw: if isinstance(image_grid, list): tmp_image_grid_thw.extend(image_grid) else: tmp_image_grid_thw.append(image_grid) return tmp_image_grid_thw def fetch_position_embedding_lfu_cache(self, embeddings, h, w, max_cache=20): grid = (h, w) if grid in self.cache_position_embedding: self.cache_position_count[grid] += 1 return self.cache_position_embedding[grid] if len(self.cache_position_embedding) >= max_cache: min_hit_grid = min(self.cache_position_count, key=self.cache_position_count.get) self.cache_position_count.pop(min_hit_grid) self.cache_position_embedding.pop(min_hit_grid) position_embedding = self.interpolate_pos_encoding(embeddings, h, w, True) self.cache_position_count[grid] = 1 self.cache_position_embedding[grid] = position_embedding return position_embedding def forward( self, pixel_values: torch.FloatTensor, position_ids: Optional[torch.Tensor] = None, image_grid_thw: Optional[List[Union[Tuple[int, int, int], List[Tuple[int, int, int]]]]] = None, interpolate_pos_encoding=False ) -> torch.Tensor: if pixel_values.dim() == 5: assert position_ids is not None from einops import rearrange batch_size, squence_len, channel, height, width = pixel_values.shape target_dtype = self.patch_embedding.weight.dtype pixel_values = rearrange(pixel_values, "b l c h w -> (b l) c h w") patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid] embeddings = patch_embeds.flatten(-2).squeeze(-1) embeddings = rearrange(embeddings, "(b l) d -> b l d", b=batch_size, l=squence_len) # todo: not dubug if interpolate_pos_encoding and image_grid_thw is not None: flatten_image_grid_thw = self.flatten_list(image_grid_thw) assert batch_size == 1 start = 0 image_embedding_list = list() assert sum([np.prod(x) for x in flatten_image_grid_thw]) == embeddings.shape[1], (flatten_image_grid_thw, embeddings.shape) embeddings = embeddings.squeeze(0) tmp_embeddings = list() for image_grid in image_grid_thw: t, h, w = image_grid end = start + t * h * w image_embeddings = embeddings[start: end, :] position_embedding = self.interpolate_pos_encoding(image_embeddings, h, w, True).squeeze(0).repeat( t, 1) image_embeddings = image_embeddings + position_embedding tmp_embeddings.append(image_embeddings) start = end embeddings = torch.concat(tmp_embeddings, dim=0).unsqueeze(0) else: embeddings = embeddings + self.packing_position_embedding(position_ids) return embeddings else: raise NotImplementedError(str(pixel_values.shape)) def eager_attention_forward( module: nn.Module, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attention_mask: Optional[torch.Tensor], scaling: float, dropout: float = 0.0, **kwargs, ): attn_weights = torch.matmul(query, key.transpose(-1, -2)) * scaling if attention_mask is not None: attn_weights = attn_weights + attention_mask attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) attn_output = torch.matmul(attn_weights, value) attn_output = attn_output.transpose(1, 2).contiguous() return attn_output, attn_weights class SiglipAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config: KeyeVisionConfig): super().__init__() self.config = config self.embed_dim = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {self.num_heads})." ) self.scale = self.head_dim**-0.5 self.dropout = config.attention_dropout self.is_causal = False self.k_proj = nn.Linear(self.embed_dim, self.embed_dim) self.v_proj = nn.Linear(self.embed_dim, self.embed_dim) self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = False, cu_seqlens: Optional[List[torch.Tensor]] = None, rope_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: """Input shape: Batch x Time x Channel""" use_flash_attn = (cu_seqlens is not None) and self.config._attn_implementation == "flash_attention_2" batch_size, seq_length, embed_dim = hidden_states.shape queries = self.q_proj(hidden_states) keys = self.k_proj(hidden_states) values = self.v_proj(hidden_states) if rope_emb is None: queries = queries.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2) keys = keys.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2) values = values.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2) else: assert cu_seqlens is not None, "Rope support flash attn only." cos, sin = rope_emb queries = queries.view(batch_size, seq_length, self.num_heads, self.head_dim) keys = keys.view(batch_size, seq_length, self.num_heads, self.head_dim) if use_flash_attn: queries, keys = apply_rotary_pos_emb_flashatt(queries, keys, cos, sin) else: queries, keys = apply_rotary_pos_emb_vision(queries, keys, cos, sin) queries = queries.transpose(1, 2) keys = keys.transpose(1, 2) values = values.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2) if not use_flash_attn: attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": if self.config._attn_implementation == "sdpa" and output_attentions: logger.warning_once( "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to " 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) elif self.config._attn_implementation == "sdpa": attention_interface = sdpa_attention_forward attn_output, attn_weights = attention_interface( self, queries, keys, values, attention_mask, is_causal=self.is_causal, scaling=self.scale, dropout=0.0 if not self.training else self.dropout, ) attn_output = attn_output.reshape(batch_size, seq_length, embed_dim).contiguous() else: assert batch_size == 1, hidden_states.shape queries = queries.transpose(1, 2).squeeze(0) keys = keys.transpose(1, 2).squeeze(0) values = values.transpose(1, 2).squeeze(0) max_seqlen_q = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item() max_seqlen_k = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item() assert cu_seqlens[-1].item() == queries.shape[0] == keys.shape[0] == values.shape[0], (cu_seqlens, queries.shape, keys.shape, values.shape) attn_output = flash_attn_varlen_func( queries, keys, values, cu_seqlens, cu_seqlens, max_seqlen_q, max_seqlen_k, causal=False, softmax_scale=self.scale, ) attn_output = attn_output.flatten(-2).unsqueeze(0) attn_weights = None attn_output = self.out_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights # Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Siglip class SiglipMLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.activation_fn = ACT2FN[config.hidden_act] self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.fc1(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states = self.fc2(hidden_states) return hidden_states class SiglipEncoderLayer(nn.Module): def __init__(self, config: Union[KeyeVisionConfig]): super().__init__() self.embed_dim = config.hidden_size self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) self.self_attn = SiglipAttention(config) self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) self.mlp = SiglipMLP(config) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, output_attentions: Optional[bool] = False, cu_seqlens: Optional[List[torch.Tensor]] = None, rope_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # cu_seqlens = None, ) -> Tuple[torch.FloatTensor]: """ Args: hidden_states (`torch.FloatTensor`): Input to the layer of shape `(batch, seq_len, embed_dim)`. attention_mask (`torch.FloatTensor`): Attention mask of shape `(batch, 1, q_len, k_v_seq_len)` where padding elements are indicated by very large negative values. output_attentions (`bool`, *optional*, defaults to `False`): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.layer_norm1(hidden_states) hidden_states, attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, cu_seqlens=cu_seqlens, rope_emb=rope_emb, # cu_seqlens=cu_seqlens ) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.layer_norm2(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs class SiglipPreTrainedModel(PreTrainedModel): config_class = KeyeConfig base_model_prefix = "siglip" supports_gradient_checkpointing = True _no_split_modules = [ "SiglipTextEmbeddings", "SiglipEncoderLayer", "SiglipVisionEmbeddings", "SiglipMultiheadAttentionPoolingHead", ] _supports_flash_attn_2 = True _supports_sdpa = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, SiglipVisionEmbeddings): width = ( self.config.vision_config.hidden_size if isinstance(self.config, KeyeConfig) else self.config.hidden_size ) nn.init.normal_(module.position_embedding.weight, std=1 / np.sqrt(width)) elif isinstance(module, nn.Embedding): default_flax_embed_init(module.weight) elif isinstance(module, SiglipAttention): nn.init.xavier_uniform_(module.q_proj.weight) nn.init.xavier_uniform_(module.k_proj.weight) nn.init.xavier_uniform_(module.v_proj.weight) nn.init.xavier_uniform_(module.out_proj.weight) nn.init.zeros_(module.q_proj.bias) nn.init.zeros_(module.k_proj.bias) nn.init.zeros_(module.v_proj.bias) nn.init.zeros_(module.out_proj.bias) elif isinstance(module, SiglipMLP): nn.init.xavier_uniform_(module.fc1.weight) nn.init.xavier_uniform_(module.fc2.weight) nn.init.normal_(module.fc1.bias, std=1e-6) nn.init.normal_(module.fc2.bias, std=1e-6) elif isinstance(module, SiglipMultiheadAttentionPoolingHead): nn.init.xavier_uniform_(module.probe.data) nn.init.xavier_uniform_(module.attention.in_proj_weight.data) nn.init.zeros_(module.attention.in_proj_bias.data) elif isinstance(module, (nn.Linear, nn.Conv2d)): lecun_normal_(module.weight) if module.bias is not None: nn.init.zeros_(module.bias) elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) SIGLIP_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`KeyeConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ SIGLIP_TEXT_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ SIGLIP_VISION_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. interpolate_pos_encoding (`bool`, *optional*, defaults to `False`): Whether to interpolate the pre-trained position encodings. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ SIGLIP_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details. return_loss (`bool`, *optional*): Whether or not to return the contrastive loss. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. interpolate_pos_encoding (`bool`, *optional*, defaults to `False`): Whether to interpolate the pre-trained position encodings. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ # Copied from transformers.models.altclip.modeling_altclip.AltCLIPEncoder with AltCLIP->Siglip class SiglipEncoder(nn.Module): """ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a [`SiglipEncoderLayer`]. Args: config: KeyeConfig """ def __init__(self, config: KeyeConfig): super().__init__() self.config = config embed_dim = config.hidden_size num_heads = config.num_attention_heads head_dim = embed_dim // num_heads self.layers = nn.ModuleList([SiglipEncoderLayer(config) for _ in range(config.num_hidden_layers)]) self.rotary_pos_emb = SigLIPRotaryEmbedding(head_dim // 2) self.gradient_checkpointing = False @staticmethod def flatten_list(image_grid_thw): tmp_image_grid_thw = list() for image_grid in image_grid_thw: if isinstance(image_grid, list): tmp_image_grid_thw.extend(image_grid) else: tmp_image_grid_thw.append(image_grid) return tmp_image_grid_thw def build_window_index(self, image_grid, window_size, device): from einops import rearrange window_indices = list() pad_values = -100 start_window_index = 0 cu_seqlens_within_windows = list() for t, h, w in image_grid: window_index = torch.arange(t * h * w, device=device).reshape(t, h, w) pad_h = (-h) % window_size pad_w = (-w) % window_size assert pad_h >= 0 and pad_w >= 0, (pad_h, pad_w) window_index = F.pad(window_index, (0, pad_w, 0, pad_h), value=pad_values) window_index = rearrange(window_index, "t (h p1) (w p2) -> t (h w) (p1 p2)", p1=window_size, p2=window_size) window_seqlens = (window_index != pad_values).long().sum(-1).reshape(-1) window_index = window_index.reshape(-1) window_index = window_index[window_index != pad_values] window_indices.append(window_index + start_window_index) cu_seqlens_within_windows.append(window_seqlens.cumsum(0) + start_window_index) start_window_index += t * h * w window_indices = torch.concat(window_indices, dim=0) cu_seqlens_within_windows = torch.concat(cu_seqlens_within_windows, dim=0) cu_seqlens_within_windows = F.pad(cu_seqlens_within_windows, (1, 0), value=0).to(torch.int32) return window_indices, cu_seqlens_within_windows # Ignore copy # @can_return_tuple def forward( self, inputs_embeds, attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, cu_seqlens: Optional[List[torch.Tensor]] = None, image_grid_thw: Optional[List[Union[Tuple[int, int, int], List[Tuple[int, int, int]]]]] = None, height_position_ids: Optional[torch.Tensor] = None, width_position_ids: Optional[torch.Tensor] = None, use_rope: Optional[bool] = False, window_size: Optional[bool] = -1, vision_or_text: str = "vision", # cu_seqlens: Optional[List[torch.Tensor]] = None, ) -> BaseModelOutput: r""" Args: inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ vision_or_text = "vision" assert vision_or_text in ["vision", "text"] use_window_attn = (window_size > 0 and vision_or_text == "vision") use_rope = (use_rope is True) and (vision_or_text == "vision") output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None device = inputs_embeds.device hidden_states = inputs_embeds attention_mask = attention_mask.to(inputs_embeds.dtype) if attention_mask is not None else None if use_rope is True: flatten_image_grid_thw = self.flatten_list(image_grid_thw) assert sum([np.prod(x) for x in flatten_image_grid_thw]) == hidden_states.shape[1], (flatten_image_grid_thw, hidden_states.shape) if width_position_ids is None or height_position_ids is None: split_hids = list() split_wids = list() for t, h, w in flatten_image_grid_thw: image_pids = torch.arange(t * h * w, device=device) % (h * w) sample_hids = image_pids // w sample_wids = image_pids % w split_hids.append(sample_hids) split_wids.append(sample_wids) width_position_ids = torch.concat(split_wids, dim=0) height_position_ids = torch.concat(split_hids, dim=0) window_indices, cu_seqlens_within_windows = None, None if use_window_attn: window_indices, cu_seqlens_within_windows = self.build_window_index(flatten_image_grid_thw, window_size, device) reversed_window_indices = window_indices.argsort() height_position_ids = height_position_ids[window_indices] width_position_ids = width_position_ids[window_indices] pids = torch.stack([height_position_ids, width_position_ids], dim=-1) max_grid_size = pids.max() + 1 rope_emb_max_grid = self.rotary_pos_emb(max_grid_size) rope_emb = rope_emb_max_grid[pids].flatten(1) rope_emb = rope_emb.repeat(1, 2) rope_emb = (rope_emb.cos(), rope_emb.sin()) else: rope_emb = None window_indices, cu_seqlens_within_windows = None, None if use_window_attn: flatten_image_grid_thw = self.flatten_list(image_grid_thw) assert sum([np.prod(x) for x in flatten_image_grid_thw]) == hidden_states.shape[1], (flatten_image_grid_thw, hidden_states.shape) window_indices, cu_seqlens_within_windows = self.build_window_index(flatten_image_grid_thw, window_size, device) reversed_window_indices = window_indices.argsort() if use_window_attn: assert cu_seqlens_within_windows is not None attn_cu_seqlens = cu_seqlens_within_windows hidden_states = hidden_states[:, window_indices, :] else: attn_cu_seqlens = cu_seqlens for encoder_layer in self.layers: if output_hidden_states: encoder_states = encoder_states + ((hidden_states[:, reversed_window_indices, :],) if use_window_attn else (hidden_states, )) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( encoder_layer.__call__, hidden_states, attention_mask, output_attentions, attn_cu_seqlens, rope_emb, ) else: layer_outputs = encoder_layer( hidden_states, attention_mask, output_attentions=output_attentions, cu_seqlens=attn_cu_seqlens, rope_emb=rope_emb, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if use_window_attn: hidden_states = hidden_states[:, reversed_window_indices, :] if output_hidden_states: encoder_states = encoder_states + (hidden_states,) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions, ) class SiglipVisionTransformer(nn.Module): def __init__(self, config: KeyeVisionConfig): super().__init__() self.config = config embed_dim = config.hidden_size self.embeddings = SiglipVisionEmbeddings(config) self.encoder = SiglipEncoder(config) self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) self.use_head = True if not hasattr(config, "vision_use_head") else config.vision_use_head if self.use_head: self.head = SiglipMultiheadAttentionPoolingHead(config) # @can_return_tuple @add_start_docstrings_to_model_forward(SIGLIP_VISION_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=KeyeVisionConfig) def forward( self, pixel_values, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, interpolate_pos_encoding: Optional[bool] = False, attention_mask: Optional[torch.Tensor] = None, sample_indices: Optional[torch.Tensor] = None, image_indices: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, height_position_ids: Optional[torch.Tensor] = None, width_position_ids: Optional[torch.Tensor] = None, cu_seqlens: Optional[List[torch.Tensor]] = None, padding_mask: Optional[torch.Tensor] = None, vision_return_embed_list: Optional[bool] = False, image_grid_thw: Optional[List[Union[Tuple[int, int, int], List[Tuple[int, int, int]]]]] = None, return_pooler_output: Optional[bool] = True, use_rope: Optional[bool] = False, window_size: Optional[bool] = -1, ) -> BaseModelOutputWithPooling: r""" Returns: """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) hidden_states = self.embeddings( pixel_values, interpolate_pos_encoding=interpolate_pos_encoding, position_ids=position_ids, image_grid_thw=image_grid_thw ) encoder_outputs: BaseModelOutput = self.encoder( inputs_embeds=hidden_states, output_attentions=output_attentions, output_hidden_states=output_hidden_states, attention_mask=attention_mask, cu_seqlens=cu_seqlens, image_grid_thw=image_grid_thw, use_rope=use_rope, height_position_ids=height_position_ids, width_position_ids=width_position_ids, window_size=window_size, vision_or_text="vision", ) last_hidden_state = encoder_outputs.last_hidden_state last_hidden_state = self.post_layernorm(last_hidden_state) if return_pooler_output is True: if sample_indices is not None: assert self.use_head is True dim = last_hidden_state.shape[-1] sample_hidden_state_list = list() hidden_state = last_hidden_state.squeeze(0) sample_index = sample_indices unique_sample_index = torch.unique(sample_index).sort().values.unbind(0) unique_sample_index = list(unique_sample_index) if len(unique_sample_index) > 0 and unique_sample_index[0] == -1: unique_sample_index = unique_sample_index[1:] for sample_idx in unique_sample_index: token_indices = (sample_index == sample_idx).nonzero().flatten() sample_hidden_state = hidden_state[token_indices] sample_hidden_state_list.append(sample_hidden_state) if not vision_return_embed_list: max_length = max([_state.shape[0] for _state in sample_hidden_state_list]) tmp_sample_hidden_state_list = list() padding_mask = list() for idx, _state in enumerate(sample_hidden_state_list): padding_length = max_length - _state.shape[0] mask = _state.new_zeros(size=(max_length, ), dtype=torch.int64) mask[-padding_length: ] = 1 padding_mask.append(mask) padding = _state.new_zeros(size=(padding_length, dim)) new_state = torch.concat([_state, padding], dim=0) tmp_sample_hidden_state_list.append(new_state) sample_hidden_state = torch.stack(tmp_sample_hidden_state_list, dim=0) padding_mask = torch.stack(padding_mask, dim=0).float().to(last_hidden_state.dtype) pooler_output = self.head(sample_hidden_state, key_padding_mask=padding_mask) else: pooler_output = list() for state in sample_hidden_state_list: sample_pooler_output = self.head(state.unsqueeze(0)) pooler_output.append(sample_pooler_output) pooler_output = torch.concat(pooler_output, dim=0) sample_hidden_state = sample_hidden_state_list return BaseModelOutputWithPooling( last_hidden_state=sample_hidden_state, pooler_output=pooler_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) else: pooler_output = self.head(last_hidden_state) if self.use_head else None return BaseModelOutputWithPooling( last_hidden_state=last_hidden_state, pooler_output=pooler_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) sample_hidden_state = list() assert cu_seqlens is not None for i in range(cu_seqlens.shape[0] - 1): start = cu_seqlens[i] end = cu_seqlens[i + 1] tensor = last_hidden_state[:, start: end, :].squeeze(0) sample_hidden_state.append(tensor) return BaseModelOutputWithPooling( last_hidden_state=sample_hidden_state, pooler_output=None, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) class SiglipMultiheadAttentionPoolingHead(nn.Module): """Multihead Attention Pooling.""" def __init__(self, config: KeyeVisionConfig): super().__init__() self.probe = nn.Parameter(torch.randn(1, 1, config.hidden_size)) self.attention = torch.nn.MultiheadAttention(config.hidden_size, config.num_attention_heads, batch_first=True) self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.mlp = SiglipMLP(config) def forward(self, hidden_state, key_padding_mask=None): batch_size = hidden_state.shape[0] probe = self.probe.repeat(batch_size, 1, 1) hidden_state = self.attention(probe, hidden_state, hidden_state, key_padding_mask=key_padding_mask)[0] residual = hidden_state hidden_state = self.layernorm(hidden_state) hidden_state = residual + self.mlp(hidden_state) return hidden_state[:, 0] @add_start_docstrings( """The vision model from SigLIP without any head or projection on top.""", SIGLIP_START_DOCSTRING, ) class SiglipVisionModel(SiglipPreTrainedModel): config_class = KeyeVisionConfig main_input_name = "pixel_values" def __init__(self, config: KeyeVisionConfig): super().__init__(config) self.vision_model = SiglipVisionTransformer(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> nn.Module: return self.vision_model.embeddings.patch_embedding # @can_return_tuple @add_start_docstrings_to_model_forward(SIGLIP_VISION_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=KeyeVisionConfig) def forward( self, pixel_values, sample_indices: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, interpolate_pos_encoding: bool = False, position_ids: Optional[torch.Tensor] = None, vision_return_embed_list: Optional[bool] = False, image_grid_thw: Optional[List[Union[Tuple[int, int, int], List[Tuple[int, int, int]]]]] = None, cu_seqlens: Optional[List[torch.Tensor]] = None, return_pooler_output: Optional[bool] = True, use_rope: Optional[bool] = False, window_size: Optional[bool] = -1, ) -> BaseModelOutputWithPooling: r""" Returns: Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, SiglipVisionModel >>> model = SiglipVisionModel.from_pretrained("google/siglip-base-patch16-224") >>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_state = outputs.last_hidden_state >>> pooled_output = outputs.pooler_output # pooled features ```""" return self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, interpolate_pos_encoding=interpolate_pos_encoding, position_ids=position_ids, vision_return_embed_list=vision_return_embed_list, image_grid_thw=image_grid_thw, sample_indices=sample_indices, cu_seqlens=cu_seqlens, return_pooler_output=return_pooler_output, use_rope=use_rope, window_size=window_size, ) class Qwen3RMSNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): """ Qwen3RMSNorm is equivalent to T5LayerNorm """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states.to(input_dtype) def extra_repr(self): return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" class KeyePatchMerger(nn.Module): def __init__(self, dim: int, context_dim: int, spatial_merge_size: int = 2) -> None: super().__init__() self.hidden_size = context_dim * (spatial_merge_size**2) self.ln_q = Qwen3RMSNorm(context_dim, eps=1e-6) self.mlp = nn.Sequential( nn.Linear(self.hidden_size, self.hidden_size), nn.GELU(), nn.Linear(self.hidden_size, dim), ) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.mlp(self.ln_q(x).view(-1, self.hidden_size)) return x def apply_rotary_pos_emb_flashatt( q: torch.Tensor, k: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor]: cos = cos.chunk(2, dim=-1)[0].contiguous() sin = sin.chunk(2, dim=-1)[0].contiguous() q_embed = apply_rotary_emb(q.float(), cos.float(), sin.float()).type_as(q) k_embed = apply_rotary_emb(k.float(), cos.float(), sin.float()).type_as(k) return q_embed, k_embed def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) def apply_rotary_pos_emb_vision( q: torch.Tensor, k: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor]: orig_q_dtype = q.dtype orig_k_dtype = k.dtype q, k = q.float(), k.float() cos, sin = cos.unsqueeze(-2).float(), sin.unsqueeze(-2).float() q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) q_embed = q_embed.to(orig_q_dtype) k_embed = k_embed.to(orig_k_dtype) return q_embed, k_embed Keye_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`KeyeConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ @add_start_docstrings( "The bare Keye Model outputting raw hidden-states without any specific head on top.", Keye_START_DOCSTRING, ) class Qwen3PreTrainedModel(PreTrainedModel): config_class = KeyeConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["KeyeDecoderLayer"] _skip_keys_device_placement = "past_key_values" _supports_flash_attn_2 = True _supports_sdpa = True _supports_cache_class = True _supports_static_cache = False # TODO (joao): fix. torch.compile failing probably due to `cache_positions` def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, (nn.Linear, nn.Conv3d)): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() class SigLIPRotaryEmbedding(nn.Module): def __init__(self, dim: int, theta: float = 10000.0) -> None: super().__init__() self.dim = dim self.theta = theta self.rope_init() def rope_init(self): inv_freq = 1.0 / (self.theta ** (torch.arange(0, self.dim, 2, dtype=torch.float) / self.dim)) self.register_buffer("inv_freq", inv_freq, persistent=False) def forward(self, seqlen: int) -> torch.Tensor: seq = torch.arange(seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype) freqs = torch.outer(seq, self.inv_freq) return freqs class KeyeRotaryEmbedding(nn.Module): def __init__(self, config: KeyeConfig, device=None): super().__init__() self.rope_kwargs = {} if config is None: logger.warning_once( "`KeyeRotaryEmbedding` can now be fully parameterized by passing the model config through the " "`config` argument. All other arguments will be removed in v4.46" ) self.rope_kwargs = { "rope_type": rope_type, "factor": scaling_factor, "dim": dim, "base": base, "max_position_embeddings": max_position_embeddings, } self.rope_type = rope_type self.max_seq_len_cached = max_position_embeddings self.original_max_seq_len = max_position_embeddings else: # BC: "rope_type" was originally "type" if config.rope_scaling is not None: self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) else: self.rope_type = "default" self.max_seq_len_cached = config.max_position_embeddings self.original_max_seq_len = config.max_position_embeddings # BC: "rope_type" was originally "type" if hasattr(config, "rope_scaling") and config.rope_scaling is not None: self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) else: self.rope_type = "default" self.max_seq_len_cached = config.max_position_embeddings self.original_max_seq_len = config.max_position_embeddings self.config = config self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) self.register_buffer("inv_freq", inv_freq, persistent=False) self.original_inv_freq = self.inv_freq def _dynamic_frequency_update(self, position_ids, device): """ dynamic RoPE layers should recompute `inv_freq` in the following situations: 1 - growing beyond the cached sequence length (allow scaling) 2 - the current sequence length is in the original scale (avoid losing precision with small sequences) """ seq_len = torch.max(position_ids) + 1 if seq_len > self.max_seq_len_cached: # growth inv_freq, self.attention_scaling = self.rope_init_fn( self.config, device, seq_len=seq_len, **self.rope_kwargs ) self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation self.max_seq_len_cached = seq_len if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset self.register_buffer("inv_freq", self.original_inv_freq, persistent=False) self.max_seq_len_cached = self.original_max_seq_len @torch.no_grad() def forward(self, x, position_ids): if "dynamic" in self.rope_type: self._dynamic_frequency_update(position_ids, device=x.device) # Core RoPE block. In contrast to other models, Keye has different position ids for the grids # So we expand the inv_freq to shape (3, ...) inv_freq_expanded = self.inv_freq[None, None, :, None].float().expand(3, position_ids.shape[1], -1, 1) position_ids_expanded = position_ids[:, :, None, :].float() # shape (3, bs, 1, positions) # Force float32 (see https://github.com/huggingface/transformers/pull/29285) device_type = x.device.type device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" with torch.autocast(device_type=device_type, enabled=False): freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(2, 3) emb = torch.cat((freqs, freqs), dim=-1) cos = emb.cos() sin = emb.sin() # Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention cos = cos * self.attention_scaling sin = sin * self.attention_scaling return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) def rope_init(self): # print("Initializing Rope Layer...") inv_freq, self.attention_scaling = self.rope_init_fn( self.config, device=None, **self.rope_kwargs ) self.register_buffer("inv_freq", inv_freq, persistent=False) self.original_inv_freq = self.inv_freq # print(f"Initializing Rope Layer done, self.inv_freq.device={self.inv_freq.device}") class Qwen3MLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.hidden_size = config.hidden_size self.intermediate_size = config.intermediate_size self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) self.act_fn = ACT2FN[config.hidden_act] def forward(self, x): down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) return down_proj def apply_multimodal_rotary_pos_emb(q, k, cos, sin, mrope_section, unsqueeze_dim=1): """Applies Rotary Position Embedding with Multimodal Sections to the query and key tensors (https://qwenlm.github.io/blog/qwen2-vl/). Explanation: Multimodal 3D rotary position embedding is an extension to 1D rotary position embedding. The input embedding sequence contains vision (images / videos) embedding and text embedding or just contains text embedding. For vision embedding part, we apply rotary position embedding on temporal, height and width dimension separately. Here we split the channel dimension to 3 chunks for the temporal, height and width rotary position embedding. For text embedding part, we just apply 1D rotary position embedding. The three rotary position index (temporal, height and width) of text embedding is always the same, so the text embedding rotary position embedding has no difference with modern LLMs. Args: q (`torch.Tensor`): The query tensor. k (`torch.Tensor`): The key tensor. cos (`torch.Tensor`): The cosine part of the rotary embedding. sin (`torch.Tensor`): The sine part of the rotary embedding. position_ids (`torch.Tensor`): The position indices of the tokens corresponding to the query and key tensors. For example, this can be used to pass offsetted position ids when working with a KV-cache. mrope_section(`List(int)`): Multimodal rope section is for channel dimension of temporal, height and width in rope calculation. unsqueeze_dim (`int`, *optional*, defaults to 1): The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. Returns: `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. """ mrope_section = mrope_section * 2 cos = torch.cat([m[i % 3] for i, m in enumerate(cos.split(mrope_section, dim=-1))], dim=-1).unsqueeze( unsqueeze_dim ) sin = torch.cat([m[i % 3] for i, m in enumerate(sin.split(mrope_section, dim=-1))], dim=-1).unsqueeze( unsqueeze_dim ) q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) class KeyeAttention(nn.Module): """ Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer and "Generating Long Sequences with Sparse Transformers". """ def __init__(self, config: KeyeConfig, layer_idx: Optional[int] = None): super().__init__() self.config = config self.layer_idx = layer_idx if layer_idx is None: logger.warning_once( f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will " "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` " "when creating this class." ) self.hidden_size = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) self.num_key_value_heads = config.num_key_value_heads self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads self.is_causal = True self.attention_dropout = config.attention_dropout self.rope_scaling = config.rope_scaling self.q_proj = nn.Linear( config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias ) self.k_proj = nn.Linear( config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias ) self.v_proj = nn.Linear( config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias ) self.o_proj = nn.Linear( config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias ) self.q_norm = Qwen3RMSNorm(self.head_dim, eps=config.rms_norm_eps) # unlike olmo, only on the head dim! self.k_norm = Qwen3RMSNorm(self.head_dim, eps=config.rms_norm_eps) # thus post q_norm does not need reshape self.rotary_emb = KeyeRotaryEmbedding(config=config) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: bsz, q_len, _ = hidden_states.size() query_states = self.q_norm(self.q_proj(hidden_states).view(bsz, q_len, -1, self.head_dim)) key_states = self.k_norm(self.k_proj(hidden_states).view(bsz, q_len, -1, self.head_dim)) value_states = self.v_proj(hidden_states) query_states = query_states.transpose(1, 2) key_states = key_states.transpose(1, 2) value_states = value_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2) cos, sin = position_embeddings query_states, key_states = apply_multimodal_rotary_pos_emb( query_states, key_states, cos, sin, self.rope_scaling["mrope_section"] ) if past_key_value is not None: cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) # repeat k/v heads if n_kv_heads < n_heads key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) if attention_mask is not None: # no matter the length, we just slice it causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] attn_weights = attn_weights + causal_mask # Fix precision issues in float16 inference # Replace inf values with zeros in attention weights to prevent NaN propagation if query_states.dtype == torch.float16: attn_weights = torch.where(torch.isinf(attn_weights), torch.zeros_like(attn_weights), attn_weights) # upcast attention to fp32 attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) attn_output = torch.matmul(attn_weights, value_states) if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.reshape(bsz, q_len, -1) attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value class KeyeFlashAttention2(KeyeAttention): """ Keye flash attention module, following Keye attention module. This module inherits from `KeyeAttention` as the weights of the module stays untouched. The only required change would be on the forward pass where it needs to correctly call the public API of flash attention and deal with padding tokens in case the input contains any of them. Additionally, for sliding window attention, we apply SWA only to the bottom config.max_window_layers layers. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignment, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC cu_seqlens: Optional[torch.Tensor] = None, sliding_window = -1, **kwargs, ): bsz, q_len, _ = hidden_states.size() q= self.q_proj(hidden_states).view(bsz, q_len, -1, self.head_dim) query_states = self.q_norm(q) key_states = self.k_norm(self.k_proj(hidden_states).view(bsz, q_len, -1, self.head_dim)) value_states = self.v_proj(hidden_states) query_states = query_states.transpose(1, 2) key_states = key_states.transpose(1, 2) value_states = value_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2) # Because the input can be padded, the absolute sequence length depends on the max position id. cos, sin = position_embeddings query_states, key_states = apply_multimodal_rotary_pos_emb( query_states, key_states, cos, sin, self.rope_scaling["mrope_section"] ) if past_key_value is not None: cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) # repeat k/v heads if n_kv_heads < n_heads key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) dropout_rate = 0.0 if not self.training else self.attention_dropout # In PEFT, usually we cast the layer norms in float32 for training stability reasons # therefore the input hidden states gets silently casted in float32. Hence, we need # cast them back in float16 just to be sure everything works as expected. input_dtype = query_states.dtype if input_dtype == torch.float32: if torch.is_autocast_enabled(): target_dtype = torch.get_autocast_gpu_dtype() # Handle the case where the model is quantized elif hasattr(self.config, "_pre_quantization_dtype"): target_dtype = self.config._pre_quantization_dtype else: target_dtype = self.q_proj.weight.dtype logger.warning_once( f"The input hidden states seems to be silently casted in float32, this might be related to" f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" f" {target_dtype}." ) query_states = query_states.to(target_dtype) key_states = key_states.to(target_dtype) value_states = value_states.to(target_dtype) # Reashape to the expected shape for Flash Attention query_states = query_states.transpose(1, 2) key_states = key_states.transpose(1, 2) value_states = value_states.transpose(1, 2) if ( sliding_window == -1 and self.config.use_sliding_window and getattr(self.config, "sliding_window", None) is not None and self.layer_idx >= self.config.max_window_layers ): sliding_window = self.config.sliding_window else: sliding_window = -1 if cu_seqlens is not None: # Sample packing with FA2 max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item() cu_seqlens = cu_seqlens.to(torch.int32) # remove batch_dim first: q.squeeze(0) attn_output = flash_attn_varlen_func( query_states.squeeze(0), key_states.squeeze(0), value_states.squeeze(0), cu_seqlens, cu_seqlens, max_seqlen, max_seqlen, dropout_p=dropout_rate, window_size=(sliding_window, sliding_window), causal=self.is_causal ) else: attn_output = _flash_attention_forward( query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate, sliding_window=sliding_window, is_causal=self.is_causal, use_top_left_mask=self._flash_attn_uses_top_left_mask, ) attn_output = attn_output.reshape(bsz, q_len, -1).contiguous() attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value class KeyeSdpaAttention(KeyeAttention): """ attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from `KeyeAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to SDPA API. """ def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: if output_attentions: # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented. logger.warning_once( "KeyeModel is using KeyeSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) return super().forward( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, ) bsz, q_len, _ = hidden_states.size() query_states = self.q_norm(self.q_proj(hidden_states).view(bsz, q_len, -1, self.head_dim)) key_states = self.k_norm(self.k_proj(hidden_states).view(bsz, q_len, -1, self.head_dim)) value_states = self.v_proj(hidden_states) query_states = query_states.transpose(1, 2) key_states = key_states.transpose(1, 2) value_states = value_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2) cos, sin = position_embeddings query_states, key_states = apply_multimodal_rotary_pos_emb( query_states, key_states, cos, sin, self.rope_scaling["mrope_section"] ) if past_key_value is not None: cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) causal_mask = attention_mask if attention_mask is not None: # no matter the length, we just slice it causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask, # Reference: https://github.com/pytorch/pytorch/issues/112577. if query_states.device.type == "cuda" and attention_mask is not None: query_states = query_states.contiguous() key_states = key_states.contiguous() value_states = value_states.contiguous() # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling. # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1. is_causal = True if causal_mask is None and q_len > 1 else False attn_output = torch.nn.functional.scaled_dot_product_attention( query_states, key_states, value_states, attn_mask=causal_mask, dropout_p=self.attention_dropout if self.training else 0.0, is_causal=is_causal, ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.view(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) return attn_output, None, past_key_value QWEN3_ATTENTION_CLASSES = { "eager": KeyeAttention, "flash_attention_2": KeyeFlashAttention2, "sdpa": KeyeSdpaAttention, } class KeyeDecoderLayer(nn.Module): def __init__(self, config: KeyeConfig, layer_idx: int): super().__init__() self.hidden_size = config.hidden_size if config.use_sliding_window and config._attn_implementation != "flash_attention_2": logger.warning_once( f"Sliding Window Attention is enabled but not implemented for `{config._attn_implementation}`; " "unexpected results may be encountered." ) self.self_attn = QWEN3_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx) self.mlp = Qwen3MLP(config) self.input_layernorm = Qwen3RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = Qwen3RMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC **kwargs, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch, sequence_length)` where padding elements are indicated by 0. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence. position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*): Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`, with `head_dim` being the embedding dimension of each attention head. kwargs (`dict`, *optional*): Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code into the model """ residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, **kwargs ) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) if use_cache: outputs += (present_key_value,) return outputs @add_start_docstrings( "The bare Keye Model outputting raw hidden-states without any specific head on top.", Keye_START_DOCSTRING, ) class Qwen3Model(Qwen3PreTrainedModel): def __init__(self, config: KeyeConfig): super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) self.layers = nn.ModuleList( [KeyeDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self._attn_implementation = config._attn_implementation self.norm = Qwen3RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.rotary_emb = KeyeRotaryEmbedding(config=config) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs ) -> Union[Tuple, BaseModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False # torch.jit.trace() doesn't support cache objects in the output if use_cache and past_key_values is None and not torch.jit.is_tracing(): past_key_values = DynamicCache() if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) if cache_position is None: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 cache_position = torch.arange( past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device ) # the hard coded `3` is for temporal, height and width. if position_ids is None: position_ids = cache_position.view(1, 1, -1).expand(3, inputs_embeds.shape[0], -1) elif position_ids.dim() == 2: position_ids = position_ids[None, ...].expand(3, position_ids.shape[0], -1) causal_mask = self._update_causal_mask( attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions ) hidden_states = inputs_embeds # create position embeddings to be shared across the decoder layers position_embeddings = self.rotary_emb(hidden_states, position_ids) # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None next_decoder_cache = None for i, decoder_layer in enumerate(self.layers): if output_hidden_states: all_hidden_states += (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, causal_mask, position_ids, past_key_values, output_attentions, use_cache, cache_position, position_embeddings, **kwargs, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=causal_mask, position_ids=position_ids, past_key_value=past_key_values, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, **kwargs, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache = layer_outputs[2 if output_attentions else 1] if output_attentions: all_self_attns += (layer_outputs[1],) hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = next_decoder_cache if use_cache else None if not return_dict: return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, ) def _update_causal_mask( self, attention_mask: torch.Tensor, input_tensor: torch.Tensor, cache_position: torch.Tensor, past_key_values: Cache, output_attentions: bool = False, ): if self.config._attn_implementation == "flash_attention_2": if attention_mask is not None and past_key_values is not None: is_padding_right = attention_mask[:, -1].sum().item() != input_tensor.size()[0] if is_padding_right: raise ValueError( "You are attempting to perform batched generation with padding_side='right'" " this may lead to unexpected behaviour for Flash Attention version of Keye. Make sure to " " call `tokenizer.padding_side = 'left'` before tokenizing the input. " ) if attention_mask is not None and 0.0 in attention_mask: return attention_mask return None # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail # to infer the attention mask. past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 using_static_cache = isinstance(past_key_values, StaticCache) using_sliding_window_cache = isinstance(past_key_values, SlidingWindowCache) # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward if ( self.config._attn_implementation == "sdpa" and not (using_static_cache or using_sliding_window_cache) and not output_attentions ): if AttentionMaskConverter._ignore_causal_mask_sdpa( attention_mask, inputs_embeds=input_tensor, past_key_values_length=past_seen_tokens, sliding_window=self.config.sliding_window, is_training=self.training, ): return None dtype, device = input_tensor.dtype, input_tensor.device min_dtype = torch.finfo(dtype).min sequence_length = input_tensor.shape[1] # SlidingWindowCache or StaticCache if using_sliding_window_cache or using_static_cache: target_length = past_key_values.get_max_cache_shape() # DynamicCache or no cache else: target_length = ( attention_mask.shape[-1] if isinstance(attention_mask, torch.Tensor) else past_seen_tokens + sequence_length + 1 ) # In case the provided `attention` mask is 2D, we generate a causal mask here (4D). causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position( attention_mask, sequence_length=sequence_length, target_length=target_length, dtype=dtype, device=device, cache_position=cache_position, batch_size=input_tensor.shape[0], config=self.config, past_key_values=past_key_values, ) if ( self.config._attn_implementation == "sdpa" and attention_mask is not None and attention_mask.device.type in ["cuda", "xpu"] and not output_attentions ): # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. # Details: https://github.com/pytorch/pytorch/issues/110213 causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) return causal_mask @staticmethod def _prepare_4d_causal_attention_mask_with_cache_position( attention_mask: torch.Tensor, sequence_length: int, target_length: int, dtype: torch.dtype, device: torch.device, cache_position: torch.Tensor, batch_size: int, config: KeyeConfig, past_key_values: Cache, ): """ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. Args: attention_mask (`torch.Tensor`): A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. sequence_length (`int`): The sequence length being processed. target_length (`int`): The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. dtype (`torch.dtype`): The dtype to use for the 4D attention mask. device (`torch.device`): The device to place the 4D attention mask on. cache_position (`torch.Tensor`): Indices depicting the position of the input sequence tokens in the sequence. batch_size (`torch.Tensor`): Batch size. config (`KeyeConfig`): The model's configuration class past_key_values (`Cache`): The cache class that is being used currently to generate """ if attention_mask is not None and attention_mask.dim() == 4: # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing. causal_mask = attention_mask else: min_dtype = torch.finfo(dtype).min causal_mask = torch.full( (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device ) diagonal_attend_mask = torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) if config.sliding_window is not None: # if we have sliding window, we should not attend to tokens beyond sliding window length, so we mask them out also # the check is needed to verify is current checkpoint was trained with sliding window or not if not isinstance(past_key_values, SlidingWindowCache) or sequence_length > target_length: sliding_attend_mask = torch.arange(target_length, device=device) <= ( cache_position.reshape(-1, 1) - config.sliding_window ) diagonal_attend_mask.bitwise_or_(sliding_attend_mask) causal_mask *= diagonal_attend_mask causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) if attention_mask is not None: causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit if attention_mask.shape[-1] > target_length: attention_mask = attention_mask[:, :target_length] mask_length = attention_mask.shape[-1] padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to( causal_mask.device ) padding_mask = padding_mask == 0 causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( padding_mask, min_dtype ) return causal_mask @dataclass class KeyeCausalLMOutputWithPast(ModelOutput): """ Base class for Keye causal language model (or autoregressive) outputs. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Language modeling loss (for next-token prediction). logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*): The rope index difference between sequence length and multimodal rope. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None past_key_values: Optional[List[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None rope_deltas: Optional[torch.LongTensor] = None class KeyeForConditionalGeneration(Qwen3PreTrainedModel, GenerationMixin): _tied_weights_keys = ["lm_head.weight"] config_class = KeyeConfig _no_split_modules = ["KeyeDecoderLayer", "SiglipEncoderLayer"] def __init__(self, config): super().__init__(config) self.mlp_AR = Projector(config, config.vision_config) self.visual = SiglipVisionModel(config.vision_config) self.model = Qwen3Model(config) self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.rope_deltas = None # cache rope_deltas here # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def set_decoder(self, decoder): self.model = decoder def get_decoder(self): return self.model def get_rope_index( self, input_ids: Optional[torch.LongTensor] = None, image_grid_thw: Optional[torch.LongTensor] = None, video_grid_thw: Optional[torch.LongTensor] = None, second_per_grid_ts: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, ) -> Tuple[torch.Tensor, torch.Tensor]: """ Calculate the 3D rope index based on image and video's temporal, height and width in LLM. Explanation: Each embedding sequence contains vision embedding and text embedding or just contains text embedding. For pure text embedding sequence, the rotary position embedding has no difference with modern LLMs. Examples: input_ids: [T T T T T], here T is for text. temporal position_ids: [0, 1, 2, 3, 4] height position_ids: [0, 1, 2, 3, 4] width position_ids: [0, 1, 2, 3, 4] For vision and text embedding sequence, we calculate 3D rotary position embedding for vision part and 1D rotary position embedding for text part. Examples: Temporal (Time): 3 patches, representing different segments of the video in time. Height: 2 patches, dividing each frame vertically. Width: 2 patches, dividing each frame horizontally. We also have some important parameters: fps (Frames Per Second): The video's frame rate, set to 1. This means one frame is processed each second. tokens_per_second: This is a crucial parameter. It dictates how many "time-steps" or "temporal tokens" are conceptually packed into a one-second interval of the video. In this case, we have 25 tokens per second. So each second of the video will be represented with 25 separate time points. It essentially defines the temporal granularity. temporal_patch_size: The number of frames that compose one temporal patch. Here, it's 2 frames. interval: The step size for the temporal position IDs, calculated as tokens_per_second * temporal_patch_size / fps. In this case, 25 * 2 / 1 = 50. This means that each temporal patch will be have a difference of 50 in the temporal position IDs. input_ids: [V V V V V V V V V V V V T T T T T], here V is for vision. vision temporal position_ids: [0, 0, 0, 0, 50, 50, 50, 50, 100, 100, 100, 100] vision height position_ids: [0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1] vision width position_ids: [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1] text temporal position_ids: [101, 102, 103, 104, 105] text height position_ids: [101, 102, 103, 104, 105] text width position_ids: [101, 102, 103, 104, 105] Here we calculate the text start position_ids as the max vision position_ids plus 1. Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*): The temporal, height and width of feature shape of each image in LLM. video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*): The temporal, height and width of feature shape of each video in LLM. second_per_grid_ts (`torch.Tensor` of shape `(num_videos)`, *optional*): The time interval (in seconds) for each grid along the temporal dimension in the 3D position IDs. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. Returns: position_ids (`torch.LongTensor` of shape `(3, batch_size, sequence_length)`) mrope_position_deltas (`torch.Tensor` of shape `(batch_size)`) """ spatial_merge_size = self.config.vision_config.spatial_merge_size image_token_id = self.config.image_token_id video_token_id = self.config.video_token_id vision_start_token_id = self.config.vision_start_token_id mrope_position_deltas = [] if input_ids is not None and (image_grid_thw is not None or video_grid_thw is not None): total_input_ids = input_ids if attention_mask is None: attention_mask = torch.ones_like(total_input_ids) position_ids = torch.ones( 3, input_ids.shape[0], input_ids.shape[1], dtype=input_ids.dtype, device=input_ids.device, ) image_index, video_index = 0, 0 attention_mask = attention_mask.to(total_input_ids.device) for i, input_ids in enumerate(total_input_ids): input_ids = input_ids[attention_mask[i] == 1] image_nums, video_nums = 0, 0 vision_start_indices = torch.argwhere(input_ids == vision_start_token_id).squeeze(1) vision_tokens = input_ids[vision_start_indices + 1] image_nums = (vision_tokens == image_token_id).sum() video_nums = (vision_tokens == video_token_id).sum() input_tokens = input_ids.tolist() llm_pos_ids_list: list = [] st = 0 remain_images, remain_videos = image_nums, video_nums for _ in range(image_nums + video_nums): if image_token_id in input_tokens and remain_images > 0: ed_image = input_tokens.index(image_token_id, st) else: ed_image = len(input_tokens) + 1 if video_token_id in input_tokens and remain_videos > 0: ed_video = input_tokens.index(video_token_id, st) else: ed_video = len(input_tokens) + 1 if ed_image < ed_video: t, h, w = ( image_grid_thw[image_index][0], image_grid_thw[image_index][1], image_grid_thw[image_index][2], ) second_per_grid_t = 0 image_index += 1 remain_images -= 1 ed = ed_image else: t, h, w = ( video_grid_thw[video_index][0], video_grid_thw[video_index][1], video_grid_thw[video_index][2], ) if second_per_grid_ts is not None: second_per_grid_t = second_per_grid_ts[video_index] else: second_per_grid_t = 1.0 video_index += 1 remain_videos -= 1 ed = ed_video llm_grid_t, llm_grid_h, llm_grid_w = ( t.item(), h.item() // spatial_merge_size, w.item() // spatial_merge_size, ) text_len = ed - st st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0 llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx) if torch.is_tensor(second_per_grid_t): second_per_grid_t = second_per_grid_t.detach().item() range_tensor = torch.arange(llm_grid_t).view(-1, 1) expanded_range = range_tensor.expand(-1, llm_grid_h * llm_grid_w) time_tensor = expanded_range * second_per_grid_t * self.config.vision_config.tokens_per_second time_tensor_long = time_tensor.long() t_index = time_tensor_long.flatten() h_index = torch.arange(llm_grid_h).view(1, -1, 1).expand(llm_grid_t, -1, llm_grid_w).flatten() w_index = torch.arange(llm_grid_w).view(1, 1, -1).expand(llm_grid_t, llm_grid_h, -1).flatten() llm_pos_ids_list.append(torch.stack([t_index, h_index, w_index]) + text_len + st_idx) st = ed + llm_grid_t * llm_grid_h * llm_grid_w if st < len(input_tokens): st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0 text_len = len(input_tokens) - st llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx) llm_positions = torch.cat(llm_pos_ids_list, dim=1).reshape(3, -1) position_ids[..., i, attention_mask[i] == 1] = llm_positions.to(position_ids.device) mrope_position_deltas.append(llm_positions.max() + 1 - len(total_input_ids[i])) mrope_position_deltas = torch.tensor(mrope_position_deltas, device=input_ids.device).unsqueeze(1) return position_ids, mrope_position_deltas else: if attention_mask is not None: position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) position_ids = position_ids.unsqueeze(0).expand(3, -1, -1).to(attention_mask.device) max_position_ids = position_ids.max(0, keepdim=False)[0].max(-1, keepdim=True)[0] mrope_position_deltas = max_position_ids + 1 - attention_mask.shape[-1] else: position_ids = ( torch.arange(input_ids.shape[1], device=input_ids.device) .view(1, 1, -1) .expand(3, input_ids.shape[0], -1) ) mrope_position_deltas = torch.zeros( [input_ids.shape[0], 1], device=input_ids.device, dtype=input_ids.dtype, ) return position_ids, mrope_position_deltas @replace_return_docstrings(output_type=KeyeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, pixel_values: Optional[torch.Tensor] = None, pixel_values_videos: Optional[torch.FloatTensor] = None, image_grid_thw: Optional[torch.LongTensor] = None, video_grid_thw: Optional[torch.LongTensor] = None, rope_deltas: Optional[torch.LongTensor] = None, cache_position: Optional[torch.LongTensor] = None, second_per_grid_ts: Optional[torch.Tensor] = None, **kwargs ) -> Union[Tuple, KeyeCausalLMOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: Example: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, KeyeForConditionalGeneration >>> model = KeyeForConditionalGeneration.from_pretrained("Keye/Keye-8B-Instruct") >>> processor = AutoProcessor.from_pretrained("Keye/Keye-8B-Instruct") >>> messages = [ { "role": "user", "content": [ {"type": "image"}, {"type": "text", "text": "What is shown in this image?"}, ], }, ] >>> url = "https://www.ilankelman.org/stopsigns/australia.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) >>> inputs = processor(text=[text], images=[image], vision_infos=[vision_infos]) >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "The image shows a street scene with a red stop sign in the foreground. In the background, there is a large red gate with Chinese characters ..." ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if inputs_embeds is None: inputs_embeds = self.model.embed_tokens(input_ids) if pixel_values is not None: pixel_values = pixel_values.type(self.visual.dtype) pixel_values = pixel_values.unsqueeze(0) siglip_position_ids = list() image_grid_hws = list() sample_indices = list() cu_seqlens = [0] pro = 0 for idx, thw in enumerate(image_grid_thw): thw_tuple = tuple(thw.detach().cpu().numpy().tolist()) numel = np.prod(thw_tuple) image_grid_hws.append(thw_tuple) image_position_ids = torch.arange(numel) % np.prod(thw_tuple[1:]) siglip_position_ids.append(image_position_ids) sample_indices.append(torch.full((numel, ), idx, dtype=torch.int64)) cu_seqlens.append(cu_seqlens[-1] + numel) siglip_position_ids = torch.concat(siglip_position_ids, dim=0).to(pixel_values.device) cu_seqlens = torch.tensor(cu_seqlens, dtype=torch.int32).to(pixel_values.device) sample_indices = torch.concat(sample_indices, dim=0).to(pixel_values.device) vision_outputs = self.visual( pixel_values=pixel_values, image_grid_thw=image_grid_hws, position_ids=siglip_position_ids, vision_return_embed_list=True, interpolate_pos_encoding=True, sample_indices=sample_indices, cu_seqlens=cu_seqlens, return_pooler_output=False, use_rope=True, window_size =-1, ) image_embeds = vision_outputs.last_hidden_state image_embeds = self.mlp_AR(image_embeds, image_grid_thw) n_image_tokens = (input_ids == self.config.image_token_id).sum().item() #image_embeds is a list of tensor, each tensor is a image feature,I want to concat them all into a tensor image_embeds = torch.cat(image_embeds,dim=0) n_image_features = image_embeds.shape[0] if n_image_tokens != n_image_features: raise ValueError( f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}" ) mask = (input_ids == self.config.image_token_id) mask_unsqueezed = mask.unsqueeze(-1) mask_expanded = mask_unsqueezed.expand_as(inputs_embeds) image_mask = mask_expanded.to(inputs_embeds.device) image_embeds = image_embeds.to(inputs_embeds.device, inputs_embeds.dtype) inputs_embeds = inputs_embeds.masked_scatter(image_mask, image_embeds) if pixel_values_videos is not None: pixel_values_videos = pixel_values_videos.type(self.visual.dtype) pixel_values_videos = pixel_values_videos.unsqueeze(0) siglip_position_ids = list() video_grid_hws = list() sample_indices = list() cu_seqlens = [0] for idx, thw in enumerate(video_grid_thw): thw_tuple = tuple(thw.detach().cpu().numpy().tolist()) numel = np.prod(thw_tuple) video_grid_hws.append(thw_tuple) video_position_ids = torch.arange(numel) % np.prod(thw_tuple[1:]) siglip_position_ids.append(video_position_ids) sample_indices.append(torch.full((numel, ), idx, dtype=torch.int64)) cu_seqlens.append(cu_seqlens[-1] + numel) siglip_position_ids = torch.concat(siglip_position_ids, dim=0).to(pixel_values_videos.device) cu_seqlens = torch.tensor(cu_seqlens, dtype=torch.int32).to(pixel_values_videos.device) sample_indices = torch.concat(sample_indices, dim=0).to(pixel_values_videos.device) vision_outputs = self.visual( pixel_values=pixel_values_videos, image_grid_thw=video_grid_hws, position_ids=siglip_position_ids, vision_return_embed_list=True, interpolate_pos_encoding=True, sample_indices=sample_indices, cu_seqlens=cu_seqlens, return_pooler_output=False, use_rope=True, window_size = -1, ) video_embeds = vision_outputs.last_hidden_state video_embeds = self.mlp_AR(video_embeds, video_grid_thw) n_video_tokens = (input_ids == self.config.video_token_id).sum().item() video_embeds = torch.cat(video_embeds,dim=0) n_video_features = video_embeds.shape[0] if n_video_tokens != n_video_features: raise ValueError( f"Video features and video tokens do not match: tokens: {n_video_tokens}, features {n_video_features}" ) mask = input_ids == self.config.video_token_id mask_unsqueezed = mask.unsqueeze(-1) mask_expanded = mask_unsqueezed.expand_as(inputs_embeds) video_mask = mask_expanded.to(inputs_embeds.device) video_embeds = video_embeds.to(inputs_embeds.device, inputs_embeds.dtype) inputs_embeds = inputs_embeds.masked_scatter(video_mask, video_embeds) if attention_mask is not None: attention_mask = attention_mask.to(inputs_embeds.device) # if we get 4D attention mask we cannot calculate rope deltas anymore. TODO @raushan fixme if position_ids is None and (attention_mask is None or attention_mask.ndim == 2): # calculate RoPE index once per generation in the pre-fill stage only if ( (cache_position is not None and cache_position[0] == 0) or self.rope_deltas is None or (past_key_values is None or past_key_values.get_seq_length() == 0) ): position_ids, rope_deltas = self.get_rope_index( input_ids, image_grid_thw, video_grid_thw, second_per_grid_ts, attention_mask, ) self.rope_deltas = rope_deltas # then use the prev pre-calculated rope-deltas to get the correct position ids else: batch_size, seq_length, _ = inputs_embeds.shape delta = ( (cache_position[0] + self.rope_deltas).to(inputs_embeds.device) if cache_position is not None else 0 ) position_ids = torch.arange(seq_length, device=inputs_embeds.device) position_ids = position_ids.view(1, -1).expand(batch_size, -1) if cache_position is not None: # otherwise `deltas` is an int `0` delta = delta.repeat_interleave(batch_size // delta.shape[0], dim=0) position_ids = position_ids.add(delta) position_ids = position_ids.unsqueeze(0).expand(3, -1, -1) outputs = self.model( input_ids=None, position_ids=position_ids, attention_mask=attention_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, cache_position=cache_position, **kwargs ) hidden_states = outputs[0] logits = self.lm_head(hidden_states) loss = None if labels is not None: # Upcast to float if we need to compute the loss to avoid potential precision issues logits = logits.float() # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() shift_logits = shift_logits.view(-1, self.config.vocab_size) shift_labels = shift_labels.view(-1) # Enable model parallelism shift_labels = shift_labels.to(shift_logits.device) loss = loss_fct(shift_logits, shift_labels) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return KeyeCausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, rope_deltas=self.rope_deltas, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, cache_position=None, position_ids=None, use_cache=True, pixel_values=None, pixel_values_videos=None, image_grid_thw=None, video_grid_thw=None, second_per_grid_ts=None, **kwargs, ): # Overwritten -- in specific circumstances we don't want to forward image inputs to the model model_inputs = super().prepare_inputs_for_generation( input_ids, past_key_values=past_key_values, attention_mask=attention_mask, inputs_embeds=inputs_embeds, cache_position=cache_position, position_ids=position_ids, pixel_values=pixel_values, pixel_values_videos=pixel_values_videos, image_grid_thw=image_grid_thw, video_grid_thw=video_grid_thw, second_per_grid_ts=second_per_grid_ts, use_cache=use_cache, **kwargs, ) model_inputs["position_ids"] = None if cache_position[0] != 0: model_inputs["pixel_values"] = None model_inputs["pixel_values_videos"] = None return model_inputs def _get_image_nums_and_video_nums( self, input_ids: Optional[torch.LongTensor], ) -> Tuple[torch.Tensor, torch.Tensor]: """ Get the number of images and videos for each sample to calculate the separation length of the sample tensor. These parameters are not passed through the processor to avoid unpredictable impacts from interface modifications. Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Returns: image_nums (`torch.LongTensor` of shape `(batch_size, num_images_sample)`) video_nums (`torch.LongTensor` of shape `(batch_size, num_videos_sample)`) """ image_token_id = self.config.image_token_id video_token_id = self.config.video_token_id vision_start_token_id = self.config.vision_start_token_id vision_start_mask = input_ids == vision_start_token_id vision_first_mask = torch.roll(vision_start_mask, shifts=1, dims=1) image_mask = input_ids == image_token_id video_mask = input_ids == video_token_id image_nums = torch.sum(vision_first_mask & image_mask, dim=1) video_nums = torch.sum(vision_first_mask & video_mask, dim=1) return image_nums, video_nums def _expand_inputs_for_generation( self, expand_size: int = 1, is_encoder_decoder: bool = False, input_ids: Optional[torch.LongTensor] = None, **model_kwargs, ) -> Tuple[torch.LongTensor, Dict[str, Any]]: # Overwritten -- Support for expanding tensors without a batch size dimension # e.g., pixel_values, image_grid_thw, pixel_values_videos, video_grid_thw, second_per_grid_t # pixel_values.shape[0] is sum(seqlen_images for samples) # image_grid_thw.shape[0] is sum(num_images for samples) if expand_size == 1: return input_ids, model_kwargs visual_keys = ["pixel_values", "image_grid_thw", "pixel_values_videos", "video_grid_thw", "second_per_grid_ts"] def _expand_dict_for_generation_visual(dict_to_expand): image_grid_thw = model_kwargs.get("image_grid_thw", None) video_grid_thw = model_kwargs.get("video_grid_thw", None) image_nums, video_nums = self._get_image_nums_and_video_nums(input_ids) def _repeat_interleave_samples(x, lengths, repeat_times): samples = torch.split(x, lengths) repeat_args = [repeat_times] + [1] * (x.dim() - 1) result = torch.cat([sample.repeat(*repeat_args) for sample in samples], dim=0) return result for key in dict_to_expand: if key == "pixel_values": # split images into samples samples = torch.split(image_grid_thw, list(image_nums)) # compute the sequence length of images for each sample lengths = [torch.prod(sample, dim=1).sum() for sample in samples] dict_to_expand[key] = _repeat_interleave_samples( dict_to_expand[key], lengths=lengths, repeat_times=expand_size ) elif key == "image_grid_thw": # get the num of images for each sample lengths = list(image_nums) dict_to_expand[key] = _repeat_interleave_samples( dict_to_expand[key], lengths=lengths, repeat_times=expand_size ) elif key == "pixel_values_videos": samples = torch.split(video_grid_thw, list(video_nums)) lengths = [torch.prod(sample, dim=1).sum() for sample in samples] dict_to_expand[key] = _repeat_interleave_samples( dict_to_expand[key], lengths=lengths, repeat_times=expand_size ) elif key == "video_grid_thw": lengths = list(video_nums) dict_to_expand[key] = _repeat_interleave_samples( dict_to_expand[key], lengths=lengths, repeat_times=expand_size ) elif key == "second_per_grid_ts": if not isinstance(dict_to_expand[key], list): raise TypeError( f"Expected value for key '{key}' to be a list, but got {type(dict_to_expand[key])} instead." ) tensor = torch.tensor(dict_to_expand[key]) lengths = list(video_nums) tensor = _repeat_interleave_samples(tensor, lengths=lengths, repeat_times=expand_size) dict_to_expand[key] = tensor.tolist() return dict_to_expand def _expand_dict_for_generation(dict_to_expand): for key in dict_to_expand: if ( key != "cache_position" and dict_to_expand[key] is not None and isinstance(dict_to_expand[key], torch.Tensor) and key not in visual_keys ): dict_to_expand[key] = dict_to_expand[key].repeat_interleave(expand_size, dim=0) return dict_to_expand # input_ids is required for expanding visual inputs # If input_ids is unavailable, visual inputs will not be used; therefore, there is no need to expand visual inputs. if input_ids is not None and input_ids.numel() != 0: model_kwargs = _expand_dict_for_generation_visual(model_kwargs) if input_ids is not None: input_ids = input_ids.repeat_interleave(expand_size, dim=0) model_kwargs = _expand_dict_for_generation(model_kwargs) if is_encoder_decoder: if model_kwargs.get("encoder_outputs") is None: raise ValueError("If `is_encoder_decoder` is True, make sure that `encoder_outputs` is defined.") model_kwargs["encoder_outputs"] = _expand_dict_for_generation(model_kwargs["encoder_outputs"]) return input_ids, model_kwargs