GenAIDevTOProd commited on
Commit
8961b4a
·
verified ·
1 Parent(s): c6cbad9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +48 -1
README.md CHANGED
@@ -1,3 +1,50 @@
1
  ---
2
  license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
+ tags:
4
+ - pytorch
5
+ - neural-network
6
+ - chaos-theory
7
+ - logistic-map
8
+ ---
9
+ # Logistic Map Approximator (Neural Network)
10
+
11
+ This model approximates the **logistic map equation**:
12
+
13
+ > xₙ₊₁ = r × xₙ × (1 − xₙ)
14
+
15
+ It is trained using a simple feedforward neural network to learn chaotic dynamics across different values of `r` ∈ [2.5, 4.0].
16
+
17
+ ## Model Details
18
+
19
+ - **Framework:** PyTorch
20
+ - **Input:**
21
+ - `x` ∈ [0, 1]
22
+ - `r` ∈ [2.5, 4.0]
23
+ - **Output:** `x_next` (approximation of the next value in sequence)
24
+ - **Loss Function:** Mean Squared Error (MSE)
25
+ - **Architecture:** 2 hidden layers (ReLU), trained for 100 epochs
26
+
27
+ ## Performance
28
+
29
+ The model closely approximates `x_next` for a wide range of `r` values, including the chaotic regime.
30
+
31
+ Visualization:
32
+
33
+ ![Prediction Results](./example_plot.png)
34
+
35
+ ## Files
36
+
37
+ - `logistic_map_approximator.pth`: Trained PyTorch model weights
38
+ - `mandelbrot.py`: Full training and evaluation code
39
+ - `README.md`: You're reading it
40
+ - `example_plot.png`: Comparison of true vs predicted outputs
41
+
42
+ ## Applications
43
+
44
+ - Chaos theory visualizations
45
+ - Educational tools on non-linear dynamics
46
+ - Function approximation benchmarking
47
+
48
+ ## License
49
+
50
+ MIT License