GenAIDevTOProd commited on
Commit
adaeeb3
·
verified ·
1 Parent(s): 3ac54bf

Upload logistic_map_approximator.pth

Browse files

# Logistic Map Approximator (Neural Network)

This model approximates the **logistic map equation**:

> xₙ₊₁ = r × xₙ × (1 − xₙ)

It is trained using a simple feedforward neural network to learn chaotic dynamics across different values of `r` ∈ [2.5, 4.0].

## Model Details

- **Framework:** PyTorch
- **Input:**
- `x` ∈ [0, 1]
- `r` ∈ [2.5, 4.0]
- **Output:** `x_next` (approximation of the next value in sequence)
- **Loss Function:** Mean Squared Error (MSE)
- **Architecture:** 2 hidden layers (ReLU), trained for 100 epochs

## Performance

The model closely approximates `x_next` for a wide range of `r` values, including the chaotic regime.

Visualization:

![Prediction Results](./example_plot.png)

## Files

- `logistic_map_approximator.pth`: Trained PyTorch model weights
- `mandelbrot.py`: Full training and evaluation code
- `README.md`: You're reading it
- `example_plot.png`: Comparison of true vs predicted outputs

## Applications

- Chaos theory visualizations
- Educational tools on non-linear dynamics
- Function approximation benchmarking

## License

MIT License

Files changed (1) hide show
  1. logistic_map_approximator.pth +3 -0
logistic_map_approximator.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d33ee76dcb1a21be55430a9ca2c1cd57769da2ea154dfdc7c999d6741fceb722
3
+ size 20604