Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,520 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""app.py
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1QIEwA7FDPNIgdUKfLyRF4K3Im9CjkadN
|
8 |
+
|
9 |
+
Logistic Map Equation: x
|
10 |
+
n+1
|
11 |
+
|
12 |
+
=r⋅x
|
13 |
+
n
|
14 |
+
|
15 |
+
⋅(1−x
|
16 |
+
n
|
17 |
+
|
18 |
+
)
|
19 |
+
|
20 |
+
- x_n is the current state (a number between 0 and 1).
|
21 |
+
|
22 |
+
- x_{n+1} is the next value in the sequence.
|
23 |
+
|
24 |
+
- r is the growth rate parameter.
|
25 |
+
|
26 |
+
This block:
|
27 |
+
|
28 |
+
- Introduces the logistic map function
|
29 |
+
|
30 |
+
- Lets us generate sequences with different r values
|
31 |
+
|
32 |
+
- Plots them to visually understand convergence, cycles, and chaos
|
33 |
+
"""
|
34 |
+
|
35 |
+
import numpy as np
|
36 |
+
import matplotlib.pyplot as plt
|
37 |
+
import random
|
38 |
+
|
39 |
+
# Define the logistic map function
|
40 |
+
def logistic_map(x0: float, r: float, n: int = 100) -> np.ndarray:
|
41 |
+
"""
|
42 |
+
Generates a logistic map sequence.
|
43 |
+
|
44 |
+
Args:
|
45 |
+
x0 (float): Initial value (between 0 and 1).
|
46 |
+
r (float): Growth rate parameter (between 0 and 4).
|
47 |
+
n (int): Number of time steps.
|
48 |
+
|
49 |
+
Returns:
|
50 |
+
np.ndarray: Sequence of logistic map values.
|
51 |
+
"""
|
52 |
+
seq = np.zeros(n)
|
53 |
+
seq[0] = x0
|
54 |
+
for i in range(1, n):
|
55 |
+
seq[i] = r * seq[i - 1] * (1 - seq[i - 1])
|
56 |
+
return seq
|
57 |
+
|
58 |
+
# Plot logistic map sequences for different r values
|
59 |
+
def plot_logistic_map_examples(x0: float = 0.51, n: int = 100):
|
60 |
+
"""
|
61 |
+
Plots logistic map sequences for several r values to visualize behavior.
|
62 |
+
|
63 |
+
Args:
|
64 |
+
x0 (float): Initial value.
|
65 |
+
n (int): Number of iterations.
|
66 |
+
"""
|
67 |
+
r_values = [2.5, 3.2, 3.5, 3.9, 4.0]
|
68 |
+
plt.figure(figsize=(12, 8))
|
69 |
+
|
70 |
+
for i, r in enumerate(r_values, 1):
|
71 |
+
x0_safe = random.uniform(0.11, 0.89)
|
72 |
+
seq = logistic_map(x0, r, n)
|
73 |
+
plt.subplot(3, 2, i)
|
74 |
+
plt.plot(seq, label=f"r = {r}")
|
75 |
+
plt.title(f"Logistic Map (r = {r})")
|
76 |
+
plt.xlabel("Time Step")
|
77 |
+
plt.ylabel("x")
|
78 |
+
plt.grid(True)
|
79 |
+
plt.legend()
|
80 |
+
|
81 |
+
plt.tight_layout()
|
82 |
+
plt.show()
|
83 |
+
|
84 |
+
# 🔍 Run the plot function to see different behaviors
|
85 |
+
plot_logistic_map_examples()
|
86 |
+
|
87 |
+
"""- Low r (e.g., 2.5) = stable
|
88 |
+
|
89 |
+
- Mid r (e.g., 3.3) = periodic
|
90 |
+
|
91 |
+
- High r (e.g., 3.8 – 4.0) = chaotic
|
92 |
+
|
93 |
+
Generate synthetic sequences using random r values
|
94 |
+
|
95 |
+
Label each sequence as:
|
96 |
+
|
97 |
+
- 0 = stable (low r)
|
98 |
+
|
99 |
+
- 1 = periodic (mid r)
|
100 |
+
|
101 |
+
- 2 = chaotic (high r)
|
102 |
+
|
103 |
+
Create a full dataset we can later feed into a classifier
|
104 |
+
"""
|
105 |
+
|
106 |
+
import random
|
107 |
+
from typing import Tuple, List
|
108 |
+
|
109 |
+
# Label assignment based on r value
|
110 |
+
def label_from_r(r: float) -> int:
|
111 |
+
"""
|
112 |
+
Assigns a regime label based on the value of r.
|
113 |
+
|
114 |
+
Args:
|
115 |
+
r (float): Growth rate.
|
116 |
+
|
117 |
+
Returns:
|
118 |
+
int: Label (0 = stable, 1 = periodic, 2 = chaotic)
|
119 |
+
"""
|
120 |
+
if r < 3.0:
|
121 |
+
return 0 # Stable regime
|
122 |
+
elif 3.0 <= r < 3.57:
|
123 |
+
return 1 # Periodic regime
|
124 |
+
else:
|
125 |
+
return 2 # Chaotic regime
|
126 |
+
|
127 |
+
# Create one labeled sequence
|
128 |
+
def generate_labeled_sequence(n: int = 100) -> Tuple[np.ndarray, int]:
|
129 |
+
"""
|
130 |
+
Generates a single logistic map sequence and its regime label.
|
131 |
+
|
132 |
+
Args:
|
133 |
+
n (int): Sequence length.
|
134 |
+
|
135 |
+
Returns:
|
136 |
+
Tuple: (sequence, label)
|
137 |
+
"""
|
138 |
+
r = round(random.uniform(2.5, 4.0), 4)
|
139 |
+
x0 = random.uniform(0.1, 0.9)
|
140 |
+
sequence = logistic_map(x0, r, n)
|
141 |
+
label = label_from_r(r)
|
142 |
+
return sequence, label
|
143 |
+
|
144 |
+
# Generate a full dataset
|
145 |
+
def generate_dataset(num_samples: int = 1000, n: int = 100) -> Tuple[np.ndarray, np.ndarray]:
|
146 |
+
"""
|
147 |
+
Generates a dataset of logistic sequences with regime labels.
|
148 |
+
|
149 |
+
Args:
|
150 |
+
num_samples (int): Number of sequences to generate.
|
151 |
+
n (int): Length of each sequence.
|
152 |
+
|
153 |
+
Returns:
|
154 |
+
Tuple[np.ndarray, np.ndarray]: X (sequences), y (labels)
|
155 |
+
"""
|
156 |
+
X, y = [], []
|
157 |
+
|
158 |
+
for _ in range(num_samples):
|
159 |
+
sequence, label = generate_labeled_sequence(n)
|
160 |
+
X.append(sequence)
|
161 |
+
y.append(label)
|
162 |
+
|
163 |
+
return np.array(X), np.array(y)
|
164 |
+
|
165 |
+
# Example: Generate small dataset and view label counts
|
166 |
+
X, y = generate_dataset(num_samples=500, n=100)
|
167 |
+
|
168 |
+
# Check class distribution
|
169 |
+
import collections
|
170 |
+
print("Label distribution:", collections.Counter(y))
|
171 |
+
|
172 |
+
"""Used controlled r ranges to simulate different market regimes
|
173 |
+
|
174 |
+
Created 500 synthetic sequences (X) and regime labels (y)
|
175 |
+
|
176 |
+
Now we can visualize, split, and train on this dataset
|
177 |
+
|
178 |
+
Visualize:
|
179 |
+
|
180 |
+
- Randomly samples from X, y
|
181 |
+
|
182 |
+
- Plots sequences grouped by class (0 = stable, 1 = periodic, 2 = chaotic)
|
183 |
+
|
184 |
+
Helps us verify that the labels match the visual behavior
|
185 |
+
"""
|
186 |
+
|
187 |
+
import matplotlib.pyplot as plt
|
188 |
+
import numpy as np
|
189 |
+
|
190 |
+
# Helper: Plot N random sequences for a given class
|
191 |
+
def plot_class_samples(X: np.ndarray, y: np.ndarray, target_label: int, n_samples: int = 5):
|
192 |
+
"""
|
193 |
+
Plots sample sequences from a specified class.
|
194 |
+
|
195 |
+
Args:
|
196 |
+
X (np.ndarray): Dataset of sequences.
|
197 |
+
y (np.ndarray): Labels (0=stable, 1=periodic, 2=chaotic).
|
198 |
+
target_label (int): Class to visualize.
|
199 |
+
n_samples (int): Number of sequences to plot.
|
200 |
+
"""
|
201 |
+
indices = np.where(y == target_label)[0]
|
202 |
+
chosen = np.random.choice(indices, n_samples, replace=False)
|
203 |
+
|
204 |
+
plt.figure(figsize=(12, 6))
|
205 |
+
for i, idx in enumerate(chosen):
|
206 |
+
plt.plot(X[idx], label=f"Sample {i+1}")
|
207 |
+
|
208 |
+
regime_name = ["Stable", "Periodic", "Chaotic"][target_label]
|
209 |
+
plt.title(f"{regime_name} Regime Samples (Label = {target_label})")
|
210 |
+
plt.xlabel("Time Step")
|
211 |
+
plt.ylabel("x")
|
212 |
+
plt.grid(True)
|
213 |
+
plt.legend()
|
214 |
+
plt.show()
|
215 |
+
|
216 |
+
# View class 0 (stable)
|
217 |
+
plot_class_samples(X, y, target_label=0)
|
218 |
+
|
219 |
+
# View class 1 (periodic)
|
220 |
+
plot_class_samples(X, y, target_label=1)
|
221 |
+
|
222 |
+
# View class 2 (chaotic)
|
223 |
+
plot_class_samples(X, y, target_label=2)
|
224 |
+
|
225 |
+
"""Stable: Sequences that flatten out
|
226 |
+
|
227 |
+
Periodic: Repeating waveforms (2, 4, 8 points)
|
228 |
+
|
229 |
+
Chaotic: No repeating pattern, jittery
|
230 |
+
|
231 |
+
Each of these sequences looks completely different — even though they're all generated by the same equation.
|
232 |
+
|
233 |
+
No fixed pattern. No periodic rhythm. Just deterministic unpredictability.
|
234 |
+
|
235 |
+
But it's not random — it's chaotic: sensitive to initial conditions, governed by internal structure (nonlinear dynamics).
|
236 |
+
|
237 |
+
Split X, y into training and testing sets
|
238 |
+
|
239 |
+
Normalize (optional, but improves convergence)
|
240 |
+
|
241 |
+
Convert to PyTorch tensors
|
242 |
+
|
243 |
+
Create DataLoaders for training
|
244 |
+
"""
|
245 |
+
|
246 |
+
import torch
|
247 |
+
from torch.utils.data import TensorDataset, DataLoader
|
248 |
+
from sklearn.model_selection import train_test_split
|
249 |
+
from sklearn.preprocessing import StandardScaler
|
250 |
+
|
251 |
+
# Step 1: Split the dataset
|
252 |
+
X_train, X_test, y_train, y_test = train_test_split(
|
253 |
+
X, y, test_size=0.2, stratify=y, random_state=42
|
254 |
+
)
|
255 |
+
|
256 |
+
# Step 2: Normalize sequences (standardization: mean=0, std=1)
|
257 |
+
scaler = StandardScaler()
|
258 |
+
X_train_scaled = scaler.fit_transform(X_train) # Fit only on train
|
259 |
+
X_test_scaled = scaler.transform(X_test)
|
260 |
+
|
261 |
+
# Step 3: Convert to PyTorch tensors
|
262 |
+
X_train_tensor = torch.tensor(X_train_scaled, dtype=torch.float32)
|
263 |
+
y_train_tensor = torch.tensor(y_train, dtype=torch.long)
|
264 |
+
|
265 |
+
X_test_tensor = torch.tensor(X_test_scaled, dtype=torch.float32)
|
266 |
+
y_test_tensor = torch.tensor(y_test, dtype=torch.long)
|
267 |
+
|
268 |
+
# Step 4: Create TensorDatasets and DataLoaders
|
269 |
+
batch_size = 64
|
270 |
+
|
271 |
+
train_dataset = TensorDataset(X_train_tensor, y_train_tensor)
|
272 |
+
test_dataset = TensorDataset(X_test_tensor, y_test_tensor)
|
273 |
+
|
274 |
+
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
|
275 |
+
test_loader = DataLoader(test_dataset, batch_size=batch_size)
|
276 |
+
|
277 |
+
"""This CNN will:
|
278 |
+
|
279 |
+
- Take a 1D time series (length 100)
|
280 |
+
|
281 |
+
- Apply temporal convolutions to learn patterns
|
282 |
+
|
283 |
+
- Use global pooling to summarize features
|
284 |
+
|
285 |
+
- Output one of 3 regime classes
|
286 |
+
"""
|
287 |
+
|
288 |
+
import torch.nn as nn
|
289 |
+
import torch.nn.functional as F
|
290 |
+
|
291 |
+
# 1D CNN model for sequence classification
|
292 |
+
class ChaosCNN(nn.Module):
|
293 |
+
def __init__(self, input_length=100, num_classes=3):
|
294 |
+
super(ChaosCNN, self).__init__()
|
295 |
+
|
296 |
+
# Feature extractors
|
297 |
+
self.conv1 = nn.Conv1d(in_channels=1, out_channels=32, kernel_size=5, padding=2)
|
298 |
+
self.bn1 = nn.BatchNorm1d(32)
|
299 |
+
|
300 |
+
self.conv2 = nn.Conv1d(in_channels=32, out_channels=64, kernel_size=5, padding=2)
|
301 |
+
self.bn2 = nn.BatchNorm1d(64)
|
302 |
+
|
303 |
+
# Global average pooling
|
304 |
+
self.global_pool = nn.AdaptiveAvgPool1d(1) # Outputs shape: (batch_size, channels, 1)
|
305 |
+
|
306 |
+
# Final classifier
|
307 |
+
self.fc = nn.Linear(64, num_classes)
|
308 |
+
|
309 |
+
def forward(self, x):
|
310 |
+
# x shape: (batch_size, sequence_length)
|
311 |
+
x = x.unsqueeze(1) # Add channel dim (batch_size, 1, sequence_length)
|
312 |
+
|
313 |
+
x = F.relu(self.bn1(self.conv1(x))) # (batch_size, 32, seq_len)
|
314 |
+
x = F.relu(self.bn2(self.conv2(x))) # (batch_size, 64, seq_len)
|
315 |
+
|
316 |
+
x = self.global_pool(x).squeeze(2) # (batch_size, 64)
|
317 |
+
out = self.fc(x) # (batch_size, num_classes)
|
318 |
+
return out
|
319 |
+
|
320 |
+
"""Conv1d: Extracts local patterns across the time dimension
|
321 |
+
|
322 |
+
BatchNorm1d: Stabilizes training and speeds up convergence
|
323 |
+
|
324 |
+
AdaptiveAvgPool1d: Summarizes the sequence into global stats
|
325 |
+
|
326 |
+
Linear: Final decision layer for 3-class classification
|
327 |
+
"""
|
328 |
+
|
329 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
330 |
+
model = ChaosCNN().to(device)
|
331 |
+
|
332 |
+
# Define loss and optimizer
|
333 |
+
criterion = nn.CrossEntropyLoss()
|
334 |
+
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
|
335 |
+
|
336 |
+
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
|
337 |
+
import seaborn as sns
|
338 |
+
import matplotlib.pyplot as plt
|
339 |
+
|
340 |
+
# Training function
|
341 |
+
def train_model(model, train_loader, test_loader, criterion, optimizer, device, epochs=15):
|
342 |
+
train_losses, test_accuracies = [], []
|
343 |
+
|
344 |
+
for epoch in range(epochs):
|
345 |
+
model.train()
|
346 |
+
running_loss = 0.0
|
347 |
+
|
348 |
+
for X_batch, y_batch in train_loader:
|
349 |
+
X_batch, y_batch = X_batch.to(device), y_batch.to(device)
|
350 |
+
|
351 |
+
optimizer.zero_grad()
|
352 |
+
outputs = model(X_batch)
|
353 |
+
loss = criterion(outputs, y_batch)
|
354 |
+
loss.backward()
|
355 |
+
optimizer.step()
|
356 |
+
|
357 |
+
running_loss += loss.item() * X_batch.size(0)
|
358 |
+
|
359 |
+
avg_loss = running_loss / len(train_loader.dataset)
|
360 |
+
train_losses.append(avg_loss)
|
361 |
+
|
362 |
+
# Evaluation after each epoch
|
363 |
+
model.eval()
|
364 |
+
all_preds, all_labels = [], []
|
365 |
+
|
366 |
+
with torch.no_grad():
|
367 |
+
for X_batch, y_batch in test_loader:
|
368 |
+
X_batch = X_batch.to(device)
|
369 |
+
outputs = model(X_batch)
|
370 |
+
preds = outputs.argmax(dim=1).cpu().numpy()
|
371 |
+
all_preds.extend(preds)
|
372 |
+
all_labels.extend(y_batch.numpy())
|
373 |
+
|
374 |
+
acc = accuracy_score(all_labels, all_preds)
|
375 |
+
test_accuracies.append(acc)
|
376 |
+
|
377 |
+
print(f"Epoch {epoch+1}/{epochs} - Loss: {avg_loss:.4f} - Test Accuracy: {acc:.4f}")
|
378 |
+
|
379 |
+
return train_losses, test_accuracies
|
380 |
+
|
381 |
+
# Train the model
|
382 |
+
train_losses, test_accuracies = train_model(
|
383 |
+
model, train_loader, test_loader, criterion, optimizer, device, epochs=15
|
384 |
+
)
|
385 |
+
|
386 |
+
plt.figure(figsize=(12, 4))
|
387 |
+
|
388 |
+
plt.subplot(1, 2, 1)
|
389 |
+
plt.plot(train_losses, label="Train Loss")
|
390 |
+
plt.xlabel("Epoch")
|
391 |
+
plt.ylabel("Loss")
|
392 |
+
plt.title("Training Loss Over Time")
|
393 |
+
plt.grid(True)
|
394 |
+
|
395 |
+
plt.subplot(1, 2, 2)
|
396 |
+
plt.plot(test_accuracies, label="Test Accuracy", color='green')
|
397 |
+
plt.xlabel("Epoch")
|
398 |
+
plt.ylabel("Accuracy")
|
399 |
+
plt.title("Test Accuracy Over Time")
|
400 |
+
plt.grid(True)
|
401 |
+
|
402 |
+
plt.tight_layout()
|
403 |
+
plt.show()
|
404 |
+
|
405 |
+
# Final performance evaluation
|
406 |
+
model.eval()
|
407 |
+
y_true, y_pred = [], []
|
408 |
+
|
409 |
+
with torch.no_grad():
|
410 |
+
for X_batch, y_batch in test_loader:
|
411 |
+
X_batch = X_batch.to(device)
|
412 |
+
outputs = model(X_batch)
|
413 |
+
preds = outputs.argmax(dim=1).cpu().numpy()
|
414 |
+
y_pred.extend(preds)
|
415 |
+
y_true.extend(y_batch.numpy())
|
416 |
+
|
417 |
+
# Confusion matrix
|
418 |
+
cm = confusion_matrix(y_true, y_pred)
|
419 |
+
labels = ["Stable", "Periodic", "Chaotic"]
|
420 |
+
|
421 |
+
plt.figure(figsize=(6, 5))
|
422 |
+
sns.heatmap(cm, annot=True, fmt="d", cmap="Blues", xticklabels=labels, yticklabels=labels)
|
423 |
+
plt.title("Confusion Matrix")
|
424 |
+
plt.xlabel("Predicted")
|
425 |
+
plt.ylabel("Actual")
|
426 |
+
plt.show()
|
427 |
+
|
428 |
+
# Classification report
|
429 |
+
print(classification_report(y_true, y_pred, target_names=labels))
|
430 |
+
|
431 |
+
"""Input an r value (between 2.5 and 4.0)
|
432 |
+
|
433 |
+
Generate a logistic map sequence
|
434 |
+
|
435 |
+
Feed it to your trained model
|
436 |
+
|
437 |
+
Predict the regime
|
438 |
+
|
439 |
+
Plot the sequence and overlay the prediction
|
440 |
+
"""
|
441 |
+
|
442 |
+
# Label map for decoding
|
443 |
+
label_map = {0: "Stable", 1: "Periodic", 2: "Chaotic"}
|
444 |
+
|
445 |
+
def predict_regime(r_value: float, model, scaler, device, sequence_length=100):
|
446 |
+
"""
|
447 |
+
Generates a logistic sequence for a given r, feeds to model, and predicts regime.
|
448 |
+
"""
|
449 |
+
assert 2.5 <= r_value <= 4.0, "r must be between 2.5 and 4.0"
|
450 |
+
|
451 |
+
# Generate sequence
|
452 |
+
x0 = np.random.uniform(0.1, 0.9)
|
453 |
+
sequence = logistic_map(x0, r_value, sequence_length).reshape(1, -1)
|
454 |
+
|
455 |
+
# Standardize using training scaler
|
456 |
+
sequence_scaled = scaler.transform(sequence)
|
457 |
+
|
458 |
+
# Convert to tensor
|
459 |
+
sequence_tensor = torch.tensor(sequence_scaled, dtype=torch.float32).to(device)
|
460 |
+
|
461 |
+
# Model inference
|
462 |
+
model.eval()
|
463 |
+
with torch.no_grad():
|
464 |
+
output = model(sequence_tensor)
|
465 |
+
pred_class = torch.argmax(output, dim=1).item()
|
466 |
+
|
467 |
+
# Plot
|
468 |
+
plt.figure(figsize=(10, 4))
|
469 |
+
plt.plot(sequence.flatten(), label=f"r = {r_value}")
|
470 |
+
plt.title(f"Predicted Regime: {label_map[pred_class]} (Class {pred_class})")
|
471 |
+
plt.xlabel("Time Step")
|
472 |
+
plt.ylabel("x")
|
473 |
+
plt.grid(True)
|
474 |
+
plt.legend()
|
475 |
+
plt.show()
|
476 |
+
|
477 |
+
return label_map[pred_class]
|
478 |
+
|
479 |
+
predict_regime(2.6, model, scaler, device)
|
480 |
+
predict_regime(3.3, model, scaler, device)
|
481 |
+
predict_regime(3.95, model, scaler, device)
|
482 |
+
|
483 |
+
import gradio as gr
|
484 |
+
|
485 |
+
# Prediction function for Gradio
|
486 |
+
def classify_sequence(r_value):
|
487 |
+
x0 = np.random.uniform(0.1, 0.9)
|
488 |
+
sequence = logistic_map(x0, r_value, 100).reshape(1, -1)
|
489 |
+
sequence_scaled = scaler.transform(sequence)
|
490 |
+
sequence_tensor = torch.tensor(sequence_scaled, dtype=torch.float32).to(device)
|
491 |
+
|
492 |
+
model.eval()
|
493 |
+
with torch.no_grad():
|
494 |
+
output = model(sequence_tensor)
|
495 |
+
pred_class = torch.argmax(output, dim=1).item()
|
496 |
+
|
497 |
+
# Plot the sequence
|
498 |
+
fig, ax = plt.subplots(figsize=(6, 3))
|
499 |
+
ax.plot(sequence.flatten())
|
500 |
+
ax.set_title(f"Logistic Map Sequence (r = {r_value})")
|
501 |
+
ax.set_xlabel("Time Step")
|
502 |
+
ax.set_ylabel("x")
|
503 |
+
ax.grid(True)
|
504 |
+
|
505 |
+
return fig, label_map[pred_class]
|
506 |
+
|
507 |
+
# Gradio UI
|
508 |
+
interface = gr.Interface(
|
509 |
+
fn=classify_sequence,
|
510 |
+
inputs=gr.Slider(2.5, 4.0, step=0.01, label="r (growth parameter)"),
|
511 |
+
outputs=[
|
512 |
+
gr.Plot(label="Sequence Plot"),
|
513 |
+
gr.Label(label="Predicted Regime")
|
514 |
+
],
|
515 |
+
title="🌀 Chaos Classifier: Logistic Map Regime Detector",
|
516 |
+
description="Move the slider to choose an r-value and visualize the predicted regime: Stable, Periodic, or Chaotic."
|
517 |
+
)
|
518 |
+
|
519 |
+
# Launch locally or in HF Space
|
520 |
+
interface.launch(share=True)
|