Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,54 @@
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
| 3 |
---
|
| 4 |
+
|
| 5 |
+
[Optimum Habana](https://github.com/huggingface/optimum-habana) is the interface between the Transformers library and Habana's Gaudi processor (HPU). It provides a set of tools enabling easy and fast model loading and fine-tuning on single- and multi-HPU settings for different downstream tasks.
|
| 6 |
+
Learn more about how to take advantage of the power of Habana HPUs to train Transformers models at [hf.co/hardware/habana](https://huggingface.co/hardware/habana).
|
| 7 |
+
|
| 8 |
+
## Wav2Vec2 model HPU configuration
|
| 9 |
+
|
| 10 |
+
This model only contains the `GaudiConfig` file for running the [Wav2Vec2](https://huggingface.co/facebook/wav2vec2-base) model on Habana's Gaudi processors (HPU).
|
| 11 |
+
|
| 12 |
+
**This model contains no model weights, only a GaudiConfig.**
|
| 13 |
+
|
| 14 |
+
This enables to specify:
|
| 15 |
+
- `use_habana_mixed_precision`: whether to use Habana Mixed Precision (HMP)
|
| 16 |
+
- `hmp_opt_level`: optimization level for HMP, see [here](https://docs.habana.ai/en/latest/PyTorch/PyTorch_Mixed_Precision/PT_Mixed_Precision.html#configuration-options) for a detailed explanation
|
| 17 |
+
- `hmp_bf16_ops`: list of operators that should run in bf16
|
| 18 |
+
- `hmp_fp32_ops`: list of operators that should run in fp32
|
| 19 |
+
- `hmp_is_verbose`: verbosity
|
| 20 |
+
- `use_fused_adam`: whether to use Habana's custom AdamW implementation
|
| 21 |
+
- `use_fused_clip_norm`: whether to use Habana's fused gradient norm clipping operator
|
| 22 |
+
|
| 23 |
+
## Usage
|
| 24 |
+
|
| 25 |
+
The model is instantiated the same way as in the Transformers library.
|
| 26 |
+
The only difference is that there are a few new training arguments specific to HPUs.
|
| 27 |
+
|
| 28 |
+
[Here](https://github.com/huggingface/optimum-habana/blob/main/examples/audio-classification/run_audio_classification.py) is an audio classification example script to fine-tune a model. You can run it with Wav2Vec2 with the following command:
|
| 29 |
+
```bash
|
| 30 |
+
python run_audio_classification.py \
|
| 31 |
+
--model_name_or_path facebook/wav2vec2-base \
|
| 32 |
+
--dataset_name superb \
|
| 33 |
+
--dataset_config_name ks \
|
| 34 |
+
--output_dir /tmp/wav2vec2-base-ft-keyword-spotting \
|
| 35 |
+
--overwrite_output_dir \
|
| 36 |
+
--remove_unused_columns False \
|
| 37 |
+
--do_train \
|
| 38 |
+
--do_eval \
|
| 39 |
+
--learning_rate 3e-5 \
|
| 40 |
+
--max_length_seconds 1 \
|
| 41 |
+
--attention_mask False \
|
| 42 |
+
--warmup_ratio 0.1 \
|
| 43 |
+
--num_train_epochs 5 \
|
| 44 |
+
--per_device_train_batch_size 256 \
|
| 45 |
+
--per_device_eval_batch_size 256 \
|
| 46 |
+
--dataloader_num_workers 4 \
|
| 47 |
+
--seed 27 \
|
| 48 |
+
--use_habana \
|
| 49 |
+
--use_lazy_mode \
|
| 50 |
+
--gaudi_config_name Habana/wav2vec2 \
|
| 51 |
+
--throughput_warmup_steps 2
|
| 52 |
+
```
|
| 53 |
+
|
| 54 |
+
Check the [documentation](https://huggingface.co/docs/optimum/habana/index) out for more advanced usage and examples.
|