File size: 5,729 Bytes
a60ce1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89b2487
 
a60ce1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
from transformers import PretrainedConfig

from transformers.models.auto import CONFIG_MAPPING
from transformers.utils.backbone_utils import verify_backbone_config_arguments

from transformers.utils import logging, PushToHubMixin

logger = logging.get_logger(__name__)

class DiffusionDetConfig(PretrainedConfig):

    model_type = "diffusiondet"

    def __init__(
            self,
            use_timm_backbone=True,
            backbone_config=None,
            num_channels=3,
            pixel_mean=(123.675, 116.280, 103.530),
            pixel_std=(58.395, 57.120, 57.375),
            resnet_out_features=("res2", "res3", "res4", "res5"),
            resnet_in_features=("res2", "res3", "res4", "res5"),
            roi_head_in_features=("p2", "p3", "p4", "p5"),
            fpn_out_channels=256,
            pooler_resolution=7,
            sampling_ratio=2,
            num_proposals=300,
            num_attn_heads=8,
            dropout=0.0,
            dim_feedforward=2048,
            activation="relu",
            hidden_dim=256,
            num_cls=1,
            num_reg=3,
            num_heads=6,
            num_dynamic=2,
            dim_dynamic=64,
            class_weight=2.0,
            giou_weight=2.0,
            l1_weight=5.0,
            deep_supervision=True,
            no_object_weight=0.1,
            use_focal=True,
            use_fed_loss=False,
            alpha=0.25,
            gamma=2.0,
            prior_prob=0.01,
            ota_k=5,
            snr_scale=2.0,
            sample_step=1,
            use_nms=True,
            swin_size="B",
            use_swin_checkpoint=False,
            swin_out_features=(0, 1, 2, 3),
            optimizer="ADAMW",
            backbone_multiplier=1.0,
            backbone='resnet50',
            use_pretrained_backbone=True,
            backbone_kwargs=None,
            dilation=False,
            **kwargs
    ):
        # We default to values which were previously hard-coded in the model. This enables configurability of the config
        # while keeping the default behavior the same.
        if use_timm_backbone and backbone_kwargs is None:
            backbone_kwargs = {}
            if dilation:
                backbone_kwargs["output_stride"] = 16
            backbone_kwargs["out_indices"] = [1, 2, 3, 4]
            backbone_kwargs["in_chans"] = num_channels
        # Backwards compatibility
        elif not use_timm_backbone and backbone in (None, "resnet50"):
            if backbone_config is None:
                logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.")
                backbone_config = CONFIG_MAPPING["resnet"](out_features=["stage4"])
            elif isinstance(backbone_config, dict):
                backbone_model_type = backbone_config.get("model_type")
                config_class = CONFIG_MAPPING[backbone_model_type]
                backbone_config = config_class.from_dict(backbone_config)
            backbone = None
            # set timm attributes to None
            dilation = None

        verify_backbone_config_arguments(
            use_timm_backbone=use_timm_backbone,
            use_pretrained_backbone=use_pretrained_backbone,
            backbone=backbone,
            backbone_config=backbone_config,
            backbone_kwargs=backbone_kwargs,
        )

        # Auto mapping
        self.auto_map = {
            "AutoConfig": "configuration_diffusiondet.DiffusionDetConfig",
            "AutoModelForObjectDetection": "modeling_diffusiondet.DiffusionDet"
        }

        # Backbone.
        self.use_timm_backbone = use_timm_backbone
        self.backbone_config = backbone_config
        self.num_channels = num_channels
        self.backbone = backbone
        self.use_pretrained_backbone = use_pretrained_backbone
        self.backbone_kwargs = backbone_kwargs
        self.dilation = dilation
        self.fpn_out_channels = fpn_out_channels

        # Model.
        self.pixel_mean = pixel_mean
        self.pixel_std = pixel_std
        self.resnet_out_features = resnet_out_features
        self.resnet_in_features = resnet_in_features
        self.roi_head_in_features = roi_head_in_features
        self.pooler_resolution = pooler_resolution
        self.sampling_ratio = sampling_ratio
        self.num_proposals = num_proposals

        # RCNN Head.
        self.num_attn_heads = num_attn_heads
        self.dropout = dropout
        self.dim_feedforward = dim_feedforward
        self.activation = activation
        self.hidden_dim = hidden_dim
        self.num_cls = num_cls
        self.num_reg = num_reg
        self.num_heads = num_heads

        # Dynamic Conv.
        self.num_dynamic = num_dynamic
        self.dim_dynamic = dim_dynamic

        # Loss.
        self.class_weight = class_weight
        self.giou_weight = giou_weight
        self.l1_weight = l1_weight
        self.deep_supervision = deep_supervision
        self.no_object_weight = no_object_weight

        # Focal Loss.
        self.use_focal = use_focal
        self.use_fed_loss = use_fed_loss
        self.alpha = alpha
        self.gamma = gamma
        self.prior_prob = prior_prob

        # Dynamic K
        self.ota_k = ota_k

        # Diffusion
        self.snr_scale = snr_scale
        self.sample_step = sample_step

        # Inference
        self.use_nms = use_nms

        # Swin Backbones
        self.swin_size = swin_size
        self.use_swin_checkpoint = use_swin_checkpoint
        self.swin_out_features = swin_out_features

        # Optimizer.
        self.optimizer = optimizer
        self.backbone_multiplier = backbone_multiplier

        self.num_labels = 80

        super().__init__()