File size: 14,890 Bytes
89b2487
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
import copy
import math
from dataclasses import astuple

import torch
from torch import nn
from torch.nn.modules.transformer import _get_activation_fn
from torchvision.ops import RoIAlign

_DEFAULT_SCALE_CLAMP = math.log(1000.0 / 16)

def convert_boxes_to_pooler_format(bboxes):
    bs, num_proposals = bboxes.shape[:2]
    sizes = torch.full((bs,), num_proposals).to(bboxes.device)
    aggregated_bboxes = bboxes.view(bs * num_proposals, -1)
    indices = torch.repeat_interleave(
        torch.arange(len(sizes), dtype=aggregated_bboxes.dtype, device=aggregated_bboxes.device), sizes
    )
    return torch.cat([indices[:, None], aggregated_bboxes], dim=1)


def assign_boxes_to_levels(
        bboxes,
        min_level,
        max_level,
        canonical_box_size,
        canonical_level,
):
    aggregated_bboxes = bboxes.view(bboxes.shape[0] * bboxes.shape[1], -1)
    area = (aggregated_bboxes[:, 2] - aggregated_bboxes[:, 0]) * (aggregated_bboxes[:, 3] - aggregated_bboxes[:, 1])
    box_sizes = torch.sqrt(area)
    # Eqn.(1) in FPN paper
    level_assignments = torch.floor(canonical_level + torch.log2(box_sizes / canonical_box_size + 1e-8))
    # clamp level to (min, max), in case the box size is too large or too small
    # for the available feature maps
    level_assignments = torch.clamp(level_assignments, min=min_level, max=max_level)
    return level_assignments.to(torch.int64) - min_level


class SinusoidalPositionEmbeddings(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.dim = dim

    def forward(self, time):
        device = time.device
        half_dim = self.dim // 2
        embeddings = math.log(10000) / (half_dim - 1)
        embeddings = torch.exp(torch.arange(half_dim, device=device) * -embeddings)
        embeddings = time[:, None] * embeddings[None, :]
        embeddings = torch.cat((embeddings.sin(), embeddings.cos()), dim=-1)
        return embeddings


class HeadDynamicK(nn.Module):
    def __init__(self, config, roi_input_shape):
        super().__init__()
        num_classes = config.num_labels

        ddet_head = DiffusionDetHead(config, roi_input_shape, num_classes)
        self.num_head = config.num_heads
        self.head_series = nn.ModuleList([copy.deepcopy(ddet_head) for _ in range(self.num_head)])
        self.return_intermediate = config.deep_supervision

        # Gaussian random feature embedding layer for time
        self.hidden_dim = config.hidden_dim
        time_dim = self.hidden_dim * 4
        self.time_mlp = nn.Sequential(
            SinusoidalPositionEmbeddings(self.hidden_dim),
            nn.Linear(self.hidden_dim, time_dim),
            nn.GELU(),
            nn.Linear(time_dim, time_dim),
        )

        # Init parameters.
        self.use_focal = config.use_focal
        self.use_fed_loss = config.use_fed_loss
        self.num_classes = num_classes
        if self.use_focal or self.use_fed_loss:
            prior_prob = config.prior_prob
            self.bias_value = -math.log((1 - prior_prob) / prior_prob)
        self._reset_parameters()

    def _reset_parameters(self):
        # init all parameters.
        for p in self.parameters():
            if p.dim() > 1:
                nn.init.xavier_uniform_(p)

            # initialize the bias for focal loss and fed loss.
            if self.use_focal or self.use_fed_loss:
                if p.shape[-1] == self.num_classes or p.shape[-1] == self.num_classes + 1:
                    nn.init.constant_(p, self.bias_value)


    def forward(self, features, bboxes, t):
        # assert t shape (batch_size)
        time = self.time_mlp(t)

        inter_class_logits = []
        inter_pred_bboxes = []

        bs = len(features[0])

        class_logits, pred_bboxes = None, None
        for head_idx, ddet_head in enumerate(self.head_series):
            class_logits, pred_bboxes, proposal_features = ddet_head(features, bboxes, time)
            if self.return_intermediate:
                inter_class_logits.append(class_logits)
                inter_pred_bboxes.append(pred_bboxes)
            bboxes = pred_bboxes.detach()

        if self.return_intermediate:
            return torch.stack(inter_class_logits), torch.stack(inter_pred_bboxes)

        return class_logits[None], pred_bboxes[None]


class DynamicConv(nn.Module):
    def __init__(self, config):
        super().__init__()

        self.hidden_dim = config.hidden_dim
        self.dim_dynamic = config.dim_dynamic
        self.num_dynamic = config.num_dynamic
        self.num_params = self.hidden_dim * self.dim_dynamic
        self.dynamic_layer = nn.Linear(self.hidden_dim, self.num_dynamic * self.num_params)

        self.norm1 = nn.LayerNorm(self.dim_dynamic)
        self.norm2 = nn.LayerNorm(self.hidden_dim)

        self.activation = nn.ReLU(inplace=True)

        pooler_resolution = config.pooler_resolution
        num_output = self.hidden_dim * pooler_resolution ** 2
        self.out_layer = nn.Linear(num_output, self.hidden_dim)
        self.norm3 = nn.LayerNorm(self.hidden_dim)


    def forward(self, pro_features, roi_features):
        features = roi_features.permute(1, 0, 2)
        parameters = self.dynamic_layer(pro_features).permute(1, 0, 2)

        param1 = parameters[:, :, :self.num_params].view(-1, self.hidden_dim, self.dim_dynamic)
        param2 = parameters[:, :, self.num_params:].view(-1, self.dim_dynamic, self.hidden_dim)

        features = torch.bmm(features, param1)
        features = self.norm1(features)
        features = self.activation(features)

        features = torch.bmm(features, param2)
        features = self.norm2(features)
        features = self.activation(features)

        features = features.flatten(1)
        features = self.out_layer(features)
        features = self.norm3(features)
        features = self.activation(features)

        return features


class DiffusionDetHead(nn.Module):
    def __init__(self, config, roi_input_shape, num_classes):
        super().__init__()

        dim_feedforward = config.dim_feedforward
        nhead = config.num_attn_heads
        dropout = config.dropout
        activation = config.activation
        in_features = config.roi_head_in_features
        pooler_resolution = config.pooler_resolution
        pooler_scales = tuple(1.0 / roi_input_shape[k]['stride'] for k in in_features)
        sampling_ratio = config.sampling_ratio

        self.hidden_dim = config.hidden_dim

        self.pooler = ROIPooler(
            output_size=pooler_resolution,
            scales=pooler_scales,
            sampling_ratio=sampling_ratio,
        )

        # dynamic.
        self.self_attn = nn.MultiheadAttention(self.hidden_dim, nhead, dropout=dropout)
        self.inst_interact = DynamicConv(config)

        self.linear1 = nn.Linear(self.hidden_dim, dim_feedforward)
        self.dropout = nn.Dropout(dropout)
        self.linear2 = nn.Linear(dim_feedforward, self.hidden_dim)

        self.norm1 = nn.LayerNorm(self.hidden_dim)
        self.norm2 = nn.LayerNorm(self.hidden_dim)
        self.norm3 = nn.LayerNorm(self.hidden_dim)
        self.dropout1 = nn.Dropout(dropout)
        self.dropout2 = nn.Dropout(dropout)
        self.dropout3 = nn.Dropout(dropout)

        self.activation = _get_activation_fn(activation)

        # block time mlp
        self.block_time_mlp = nn.Sequential(nn.SiLU(), nn.Linear(self.hidden_dim * 4, self.hidden_dim * 2))

        # cls.
        num_cls = config.num_cls
        cls_module = list()
        for _ in range(num_cls):
            cls_module.append(nn.Linear(self.hidden_dim, self.hidden_dim, False))
            cls_module.append(nn.LayerNorm(self.hidden_dim))
            cls_module.append(nn.ReLU(inplace=True))
        self.cls_module = nn.ModuleList(cls_module)

        # reg.
        num_reg = config.num_reg
        reg_module = list()
        for _ in range(num_reg):
            reg_module.append(nn.Linear(self.hidden_dim, self.hidden_dim, False))
            reg_module.append(nn.LayerNorm(self.hidden_dim))
            reg_module.append(nn.ReLU(inplace=True))
        self.reg_module = nn.ModuleList(reg_module)

        # pred.
        self.use_focal = config.use_focal
        self.use_fed_loss = config.use_fed_loss
        if self.use_focal or self.use_fed_loss:
            self.class_logits = nn.Linear(self.hidden_dim, num_classes)
        else:
            self.class_logits = nn.Linear(self.hidden_dim, num_classes + 1)
        self.bboxes_delta = nn.Linear(self.hidden_dim, 4)
        self.scale_clamp = _DEFAULT_SCALE_CLAMP
        self.bbox_weights = (2.0, 2.0, 1.0, 1.0)

    def forward(self, features, bboxes, time_emb):
        bs, num_proposals = bboxes.shape[:2]

        # roi_feature.
        roi_features = self.pooler(features, bboxes)

        pro_features = roi_features.view(bs, num_proposals, self.hidden_dim, -1).mean(-1)

        roi_features = roi_features.view(bs * num_proposals, self.hidden_dim, -1).permute(2, 0, 1)

        # self_att.
        pro_features = pro_features.view(bs, num_proposals, self.hidden_dim).permute(1, 0, 2)
        pro_features2 = self.self_attn(pro_features, pro_features, value=pro_features)[0]
        pro_features = pro_features + self.dropout1(pro_features2)
        pro_features = self.norm1(pro_features)

        # inst_interact.
        pro_features = pro_features.view(num_proposals, bs, self.hidden_dim).permute(1, 0, 2).reshape(1, bs * num_proposals,
                                                                                      self.hidden_dim)
        pro_features2 = self.inst_interact(pro_features, roi_features)
        pro_features = pro_features + self.dropout2(pro_features2)
        obj_features = self.norm2(pro_features)

        # obj_feature.
        obj_features2 = self.linear2(self.dropout(self.activation(self.linear1(obj_features))))
        obj_features = obj_features + self.dropout3(obj_features2)
        obj_features = self.norm3(obj_features)

        fc_feature = obj_features.transpose(0, 1).reshape(bs * num_proposals, -1)

        scale_shift = self.block_time_mlp(time_emb)
        scale_shift = torch.repeat_interleave(scale_shift, num_proposals, dim=0)
        scale, shift = scale_shift.chunk(2, dim=1)
        fc_feature = fc_feature * (scale + 1) + shift

        cls_feature = fc_feature.clone()
        reg_feature = fc_feature.clone()
        for cls_layer in self.cls_module:
            cls_feature = cls_layer(cls_feature)
        for reg_layer in self.reg_module:
            reg_feature = reg_layer(reg_feature)
        class_logits = self.class_logits(cls_feature)
        bboxes_deltas = self.bboxes_delta(reg_feature)
        pred_bboxes = self.apply_deltas(bboxes_deltas, bboxes.view(-1, 4))

        return class_logits.view(bs, num_proposals, -1), pred_bboxes.view(bs, num_proposals, -1), obj_features

    def apply_deltas(self, deltas, boxes):
        """
        Apply transformation `deltas` (dx, dy, dw, dh) to `boxes`.

        Args:
            deltas (Tensor): transformation deltas of shape (N, k*4), where k >= 1.
                deltas[i] represents k potentially different class-specific
                box transformations for the single box boxes[i].
            boxes (Tensor): boxes to transform, of shape (N, 4)
        """
        boxes = boxes.to(deltas.dtype)

        widths = boxes[:, 2] - boxes[:, 0]
        heights = boxes[:, 3] - boxes[:, 1]
        ctr_x = boxes[:, 0] + 0.5 * widths
        ctr_y = boxes[:, 1] + 0.5 * heights

        wx, wy, ww, wh = self.bbox_weights
        dx = deltas[:, 0::4] / wx
        dy = deltas[:, 1::4] / wy
        dw = deltas[:, 2::4] / ww
        dh = deltas[:, 3::4] / wh

        # Prevent sending too large values into torch.exp()
        dw = torch.clamp(dw, max=self.scale_clamp)
        dh = torch.clamp(dh, max=self.scale_clamp)

        pred_ctr_x = dx * widths[:, None] + ctr_x[:, None]
        pred_ctr_y = dy * heights[:, None] + ctr_y[:, None]
        pred_w = torch.exp(dw) * widths[:, None]
        pred_h = torch.exp(dh) * heights[:, None]

        pred_boxes = torch.zeros_like(deltas)
        pred_boxes[:, 0::4] = pred_ctr_x - 0.5 * pred_w  # x1
        pred_boxes[:, 1::4] = pred_ctr_y - 0.5 * pred_h  # y1
        pred_boxes[:, 2::4] = pred_ctr_x + 0.5 * pred_w  # x2
        pred_boxes[:, 3::4] = pred_ctr_y + 0.5 * pred_h  # y2

        return pred_boxes


class ROIPooler(nn.Module):
    """
    Region of interest feature map pooler that supports pooling from one or more
    feature maps.
    """

    def __init__(
            self,
            output_size,
            scales,
            sampling_ratio,
            canonical_box_size=224,
            canonical_level=4,
    ):
        super().__init__()

        min_level = -(math.log2(scales[0]))
        max_level = -(math.log2(scales[-1]))

        if isinstance(output_size, int):
            output_size = (output_size, output_size)
        assert len(output_size) == 2 and isinstance(output_size[0], int) and isinstance(output_size[1], int)
        assert math.isclose(min_level, int(min_level)) and math.isclose(max_level, int(max_level))
        assert (len(scales) == max_level - min_level + 1)
        assert 0 <= min_level <= max_level
        assert canonical_box_size > 0

        self.output_size = output_size
        self.min_level = int(min_level)
        self.max_level = int(max_level)
        self.canonical_level = canonical_level
        self.canonical_box_size = canonical_box_size
        self.level_poolers = nn.ModuleList(
            RoIAlign(
                output_size, spatial_scale=scale, sampling_ratio=sampling_ratio, aligned=True
            )
            for scale in scales
        )

    def forward(self, x, bboxes):
        num_level_assignments = len(self.level_poolers)
        assert len(x) == num_level_assignments and len(bboxes) == x[0].size(0)

        pooler_fmt_boxes = convert_boxes_to_pooler_format(bboxes)

        if num_level_assignments == 1:
            return self.level_poolers[0](x[0], pooler_fmt_boxes)

        level_assignments = assign_boxes_to_levels(
            bboxes, self.min_level, self.max_level, self.canonical_box_size, self.canonical_level
        )

        batches = pooler_fmt_boxes.shape[0]
        channels = x[0].shape[1]
        output_size = self.output_size[0]
        sizes = (batches, channels, output_size, output_size)

        output = torch.zeros(sizes, dtype=x[0].dtype, device=x[0].device)

        for level, (x_level, pooler) in enumerate(zip(x, self.level_poolers)):
            inds = (level_assignments == level).nonzero(as_tuple=True)[0]
            pooler_fmt_boxes_level = pooler_fmt_boxes[inds]
            # Use index_put_ instead of advance indexing, to avoid pytorch/issues/49852
            output.index_put_((inds,), pooler(x_level, pooler_fmt_boxes_level))

        return output