File size: 20,184 Bytes
89b2487 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 |
import torch
import torch.nn.functional as F
from fvcore.nn import sigmoid_focal_loss_jit
from torch import nn
import torch.distributed as dist
from torch.distributed import get_world_size
from torchvision import ops
def is_dist_avail_and_initialized():
if not dist.is_available():
return False
if not dist.is_initialized():
return False
return True
def get_fed_loss_classes(gt_classes, num_fed_loss_classes, num_classes, weight):
"""
Args:
gt_classes: a long tensor of shape R that contains the gt class label of each proposal.
num_fed_loss_classes: minimum number of classes to keep when calculating federated loss.
Will sample negative classes if number of unique gt_classes is smaller than this value.
num_classes: number of foreground classes
weight: probabilities used to sample negative classes
Returns:
Tensor:
classes to keep when calculating the federated loss, including both unique gt
classes and sampled negative classes.
"""
unique_gt_classes = torch.unique(gt_classes)
prob = unique_gt_classes.new_ones(num_classes + 1).float()
prob[-1] = 0
if len(unique_gt_classes) < num_fed_loss_classes:
prob[:num_classes] = weight.float().clone()
prob[unique_gt_classes] = 0
sampled_negative_classes = torch.multinomial(
prob, num_fed_loss_classes - len(unique_gt_classes), replacement=False
)
fed_loss_classes = torch.cat([unique_gt_classes, sampled_negative_classes])
else:
fed_loss_classes = unique_gt_classes
return fed_loss_classes
class CriterionDynamicK(nn.Module):
""" This class computes the loss for DiffusionDet.
The process happens in two steps:
1) we compute hungarian assignment between ground truth boxes and the outputs of the model
2) we supervise each pair of matched ground-truth / prediction (supervise class and box)
"""
def __init__(self, config, num_classes, weight_dict):
""" Create the criterion.
Parameters:
num_classes: number of object categories, omitting the special no-object category
weight_dict: dict containing as key the names of the losses and as values their relative weight.
"""
super().__init__()
self.config = config
self.num_classes = num_classes
self.matcher = HungarianMatcherDynamicK(config)
self.weight_dict = weight_dict
self.eos_coef = config.no_object_weight
self.use_focal = config.use_focal
self.use_fed_loss = config.use_fed_loss
if self.use_focal:
self.focal_loss_alpha = config.alpha
self.focal_loss_gamma = config.gamma
# copy-paste from https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/roi_heads/fast_rcnn.py#L356
def loss_labels(self, outputs, targets, indices):
"""Classification loss (NLL)
targets dicts must contain the key "labels" containing a tensor of dim [nb_target_boxes]
"""
assert 'pred_logits' in outputs
src_logits = outputs['pred_logits']
batch_size = len(targets)
# idx = self._get_src_permutation_idx(indices)
# target_classes_o = torch.cat([t["labels"][J] for t, (_, J) in zip(targets, indices)])
target_classes = torch.full(src_logits.shape[:2], self.num_classes,
dtype=torch.int64, device=src_logits.device)
src_logits_list = []
target_classes_o_list = []
# target_classes[idx] = target_classes_o
for batch_idx in range(batch_size):
valid_query = indices[batch_idx][0]
gt_multi_idx = indices[batch_idx][1]
if len(gt_multi_idx) == 0:
continue
bz_src_logits = src_logits[batch_idx]
target_classes_o = targets[batch_idx]["labels"]
target_classes[batch_idx, valid_query] = target_classes_o[gt_multi_idx]
src_logits_list.append(bz_src_logits[valid_query])
target_classes_o_list.append(target_classes_o[gt_multi_idx])
if self.use_focal or self.use_fed_loss:
num_boxes = torch.cat(target_classes_o_list).shape[0] if len(target_classes_o_list) != 0 else 1
target_classes_onehot = torch.zeros([src_logits.shape[0], src_logits.shape[1], self.num_classes + 1],
dtype=src_logits.dtype, layout=src_logits.layout,
device=src_logits.device)
target_classes_onehot.scatter_(2, target_classes.unsqueeze(-1), 1)
gt_classes = torch.argmax(target_classes_onehot, dim=-1)
target_classes_onehot = target_classes_onehot[:, :, :-1]
src_logits = src_logits.flatten(0, 1)
target_classes_onehot = target_classes_onehot.flatten(0, 1)
if self.use_focal:
cls_loss = sigmoid_focal_loss_jit(src_logits, target_classes_onehot, alpha=self.focal_loss_alpha,
gamma=self.focal_loss_gamma, reduction="none")
else:
cls_loss = F.binary_cross_entropy_with_logits(src_logits, target_classes_onehot, reduction="none")
if self.use_fed_loss:
K = self.num_classes
N = src_logits.shape[0]
fed_loss_classes = get_fed_loss_classes(
gt_classes,
num_fed_loss_classes=self.fed_loss_num_classes,
num_classes=K,
weight=self.fed_loss_cls_weights,
)
fed_loss_classes_mask = fed_loss_classes.new_zeros(K + 1)
fed_loss_classes_mask[fed_loss_classes] = 1
fed_loss_classes_mask = fed_loss_classes_mask[:K]
weight = fed_loss_classes_mask.view(1, K).expand(N, K).float()
loss_ce = torch.sum(cls_loss * weight) / num_boxes
else:
loss_ce = torch.sum(cls_loss) / num_boxes
losses = {'loss_ce': loss_ce}
else:
raise NotImplementedError
return losses
def loss_boxes(self, outputs, targets, indices):
"""Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss
targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4]
The target boxes are expected in format (center_x, center_y, w, h), normalized by the image size.
"""
assert 'pred_boxes' in outputs
# idx = self._get_src_permutation_idx(indices)
src_boxes = outputs['pred_boxes']
batch_size = len(targets)
pred_box_list = []
pred_norm_box_list = []
tgt_box_list = []
tgt_box_xyxy_list = []
for batch_idx in range(batch_size):
valid_query = indices[batch_idx][0]
gt_multi_idx = indices[batch_idx][1]
if len(gt_multi_idx) == 0:
continue
bz_image_whwh = targets[batch_idx]['image_size_xyxy']
bz_src_boxes = src_boxes[batch_idx]
bz_target_boxes = targets[batch_idx]["boxes"] # normalized (cx, cy, w, h)
bz_target_boxes_xyxy = targets[batch_idx]["boxes_xyxy"] # absolute (x1, y1, x2, y2)
pred_box_list.append(bz_src_boxes[valid_query])
pred_norm_box_list.append(bz_src_boxes[valid_query] / bz_image_whwh) # normalize (x1, y1, x2, y2)
tgt_box_list.append(bz_target_boxes[gt_multi_idx])
tgt_box_xyxy_list.append(bz_target_boxes_xyxy[gt_multi_idx])
if len(pred_box_list) != 0:
src_boxes = torch.cat(pred_box_list)
src_boxes_norm = torch.cat(pred_norm_box_list) # normalized (x1, y1, x2, y2)
target_boxes = torch.cat(tgt_box_list)
target_boxes_abs_xyxy = torch.cat(tgt_box_xyxy_list)
num_boxes = src_boxes.shape[0]
losses = {}
# require normalized (x1, y1, x2, y2)
loss_bbox = F.l1_loss(src_boxes_norm, ops.box_convert(target_boxes, 'cxcywh', 'xyxy'), reduction='none')
losses['loss_bbox'] = loss_bbox.sum() / num_boxes
# loss_giou = giou_loss(box_ops.box_cxcywh_to_xyxy(src_boxes), box_ops.box_cxcywh_to_xyxy(target_boxes))
loss_giou = 1 - torch.diag(ops.generalized_box_iou(src_boxes, target_boxes_abs_xyxy))
losses['loss_giou'] = loss_giou.sum() / num_boxes
else:
losses = {'loss_bbox': outputs['pred_boxes'].sum() * 0,
'loss_giou': outputs['pred_boxes'].sum() * 0}
return losses
def get_loss(self, loss, outputs, targets, indices):
loss_map = {
'labels': self.loss_labels,
'boxes': self.loss_boxes,
}
assert loss in loss_map, f'do you really want to compute {loss} loss?'
return loss_map[loss](outputs, targets, indices)
def forward(self, outputs, targets):
""" This performs the loss computation.
Parameters:
outputs: dict of tensors, see the output specification of the model for the format
targets: list of dicts, such that len(targets) == batch_size.
The expected keys in each dict depends on the losses applied, see each loss' doc
"""
outputs_without_aux = {k: v for k, v in outputs.items() if k != 'aux_outputs'}
# Retrieve the matching between the outputs of the last layer and the targets
indices, _ = self.matcher(outputs_without_aux, targets)
# Compute all the requested losses
losses = {}
for loss in ["labels", "boxes"]:
losses.update(self.get_loss(loss, outputs, targets, indices))
# In case of auxiliary losses, we repeat this process with the output of each intermediate layer.
if 'aux_outputs' in outputs:
for i, aux_outputs in enumerate(outputs['aux_outputs']):
indices, _ = self.matcher(aux_outputs, targets)
for loss in ["labels", "boxes"]:
if loss == 'masks':
# Intermediate masks losses are too costly to compute, we ignore them.
continue
l_dict = self.get_loss(loss, aux_outputs, targets, indices)
l_dict = {k + f'_{i}': v for k, v in l_dict.items()}
losses.update(l_dict)
return losses
def get_in_boxes_info(boxes, target_gts):
xy_target_gts = ops.box_convert(target_gts, 'cxcywh', 'xyxy') # (x1, y1, x2, y2)
anchor_center_x = boxes[:, 0].unsqueeze(1)
anchor_center_y = boxes[:, 1].unsqueeze(1)
# whether the center of each anchor is inside a gt box
b_l = anchor_center_x > xy_target_gts[:, 0].unsqueeze(0)
b_r = anchor_center_x < xy_target_gts[:, 2].unsqueeze(0)
b_t = anchor_center_y > xy_target_gts[:, 1].unsqueeze(0)
b_b = anchor_center_y < xy_target_gts[:, 3].unsqueeze(0)
# (b_l.long()+b_r.long()+b_t.long()+b_b.long())==4 [300,num_gt] ,
is_in_boxes = ((b_l.long() + b_r.long() + b_t.long() + b_b.long()) == 4)
is_in_boxes_all = is_in_boxes.sum(1) > 0 # [num_query]
# in fixed center
center_radius = 2.5
# Modified to self-adapted sampling --- the center size depends on the size of the gt boxes
# https://github.com/dulucas/UVO_Challenge/blob/main/Track1/detection/mmdet/core/bbox/assigners/rpn_sim_ota_assigner.py#L212
b_l = anchor_center_x > (
target_gts[:, 0] - (center_radius * (xy_target_gts[:, 2] - xy_target_gts[:, 0]))).unsqueeze(0)
b_r = anchor_center_x < (
target_gts[:, 0] + (center_radius * (xy_target_gts[:, 2] - xy_target_gts[:, 0]))).unsqueeze(0)
b_t = anchor_center_y > (
target_gts[:, 1] - (center_radius * (xy_target_gts[:, 3] - xy_target_gts[:, 1]))).unsqueeze(0)
b_b = anchor_center_y < (
target_gts[:, 1] + (center_radius * (xy_target_gts[:, 3] - xy_target_gts[:, 1]))).unsqueeze(0)
is_in_centers = ((b_l.long() + b_r.long() + b_t.long() + b_b.long()) == 4)
is_in_centers_all = is_in_centers.sum(1) > 0
is_in_boxes_anchor = is_in_boxes_all | is_in_centers_all
is_in_boxes_and_center = (is_in_boxes & is_in_centers)
return is_in_boxes_anchor, is_in_boxes_and_center
class HungarianMatcherDynamicK(nn.Module):
"""This class computes an assignment between the targets and the predictions of the network
For efficiency reasons, the targets don't include the no_object. Because of this, in general,
there are more predictions than targets. In this case, we do a 1-to-k (dynamic) matching of the best predictions,
while the others are un-matched (and thus treated as non-objects).
"""
def __init__(self, config):
super().__init__()
self.use_focal = config.use_focal
self.use_fed_loss = config.use_fed_loss
self.cost_class = config.class_weight
self.cost_giou = config.giou_weight
self.cost_bbox = config.l1_weight
self.ota_k = config.ota_k
if self.use_focal:
self.focal_loss_alpha = config.alpha
self.focal_loss_gamma = config.gamma
assert self.cost_class != 0 or self.cost_bbox != 0 or self.cost_giou != 0, "all costs cant be 0"
def forward(self, outputs, targets):
""" simOTA for detr"""
with torch.no_grad():
bs, num_queries = outputs["pred_logits"].shape[:2]
# We flatten to compute the cost matrices in a batch
if self.use_focal or self.use_fed_loss:
out_prob = outputs["pred_logits"].sigmoid() # [batch_size, num_queries, num_classes]
out_bbox = outputs["pred_boxes"] # [batch_size, num_queries, 4]
else:
out_prob = outputs["pred_logits"].softmax(-1) # [batch_size, num_queries, num_classes]
out_bbox = outputs["pred_boxes"] # [batch_size, num_queries, 4]
indices = []
matched_ids = []
assert bs == len(targets)
for batch_idx in range(bs):
bz_boxes = out_bbox[batch_idx] # [num_proposals, 4]
bz_out_prob = out_prob[batch_idx]
bz_tgt_ids = targets[batch_idx]["labels"]
num_insts = len(bz_tgt_ids)
if num_insts == 0: # empty object in key frame
non_valid = torch.zeros(bz_out_prob.shape[0]).to(bz_out_prob) > 0
indices_batchi = (non_valid, torch.arange(0, 0).to(bz_out_prob))
matched_qidx = torch.arange(0, 0).to(bz_out_prob)
indices.append(indices_batchi)
matched_ids.append(matched_qidx)
continue
bz_gtboxs = targets[batch_idx]['boxes'] # [num_gt, 4] normalized (cx, xy, w, h)
bz_gtboxs_abs_xyxy = targets[batch_idx]['boxes_xyxy']
fg_mask, is_in_boxes_and_center = get_in_boxes_info(
ops.box_convert(bz_boxes, 'xyxy', 'cxcywh'), # absolute (cx, cy, w, h)
ops.box_convert(bz_gtboxs_abs_xyxy, 'xyxy', 'cxcywh') # absolute (cx, cy, w, h)
)
pair_wise_ious = ops.box_iou(bz_boxes, bz_gtboxs_abs_xyxy)
# Compute the classification cost.
if self.use_focal:
alpha = self.focal_loss_alpha
gamma = self.focal_loss_gamma
neg_cost_class = (1 - alpha) * (bz_out_prob ** gamma) * (-(1 - bz_out_prob + 1e-8).log())
pos_cost_class = alpha * ((1 - bz_out_prob) ** gamma) * (-(bz_out_prob + 1e-8).log())
cost_class = pos_cost_class[:, bz_tgt_ids] - neg_cost_class[:, bz_tgt_ids]
elif self.use_fed_loss:
# focal loss degenerates to naive one
neg_cost_class = (-(1 - bz_out_prob + 1e-8).log())
pos_cost_class = (-(bz_out_prob + 1e-8).log())
cost_class = pos_cost_class[:, bz_tgt_ids] - neg_cost_class[:, bz_tgt_ids]
else:
cost_class = -bz_out_prob[:, bz_tgt_ids]
# Compute the L1 cost between boxes
# image_size_out = torch.cat([v["image_size_xyxy"].unsqueeze(0) for v in targets])
# image_size_out = image_size_out.unsqueeze(1).repeat(1, num_queries, 1).flatten(0, 1)
# image_size_tgt = torch.cat([v["image_size_xyxy_tgt"] for v in targets])
bz_image_size_out = targets[batch_idx]['image_size_xyxy']
bz_image_size_tgt = targets[batch_idx]['image_size_xyxy_tgt']
bz_out_bbox_ = bz_boxes / bz_image_size_out # normalize (x1, y1, x2, y2)
bz_tgt_bbox_ = bz_gtboxs_abs_xyxy / bz_image_size_tgt # normalize (x1, y1, x2, y2)
cost_bbox = torch.cdist(bz_out_bbox_, bz_tgt_bbox_, p=1)
cost_giou = -ops.generalized_box_iou(bz_boxes, bz_gtboxs_abs_xyxy)
# Final cost matrix
cost = self.cost_bbox * cost_bbox + self.cost_class * cost_class + self.cost_giou * cost_giou + 100.0 * (
~is_in_boxes_and_center)
# cost = (cost_class + 3.0 * cost_giou + 100.0 * (~is_in_boxes_and_center)) # [num_query,num_gt]
cost[~fg_mask] = cost[~fg_mask] + 10000.0
# if bz_gtboxs.shape[0]>0:
indices_batchi, matched_qidx = self.dynamic_k_matching(cost, pair_wise_ious, bz_gtboxs.shape[0])
indices.append(indices_batchi)
matched_ids.append(matched_qidx)
return indices, matched_ids
def dynamic_k_matching(self, cost, pair_wise_ious, num_gt):
matching_matrix = torch.zeros_like(cost) # [300,num_gt]
ious_in_boxes_matrix = pair_wise_ious
n_candidate_k = self.ota_k
# Take the sum of the predicted value and the top 10 iou of gt with the largest iou as dynamic_k
topk_ious, _ = torch.topk(ious_in_boxes_matrix, n_candidate_k, dim=0)
dynamic_ks = torch.clamp(topk_ious.sum(0).int(), min=1)
for gt_idx in range(num_gt):
_, pos_idx = torch.topk(cost[:, gt_idx], k=dynamic_ks[gt_idx].item(), largest=False)
matching_matrix[:, gt_idx][pos_idx] = 1.0
del topk_ious, dynamic_ks, pos_idx
anchor_matching_gt = matching_matrix.sum(1)
if (anchor_matching_gt > 1).sum() > 0:
_, cost_argmin = torch.min(cost[anchor_matching_gt > 1], dim=1)
matching_matrix[anchor_matching_gt > 1] *= 0
matching_matrix[anchor_matching_gt > 1, cost_argmin,] = 1
while (matching_matrix.sum(0) == 0).any():
num_zero_gt = (matching_matrix.sum(0) == 0).sum()
matched_query_id = matching_matrix.sum(1) > 0
cost[matched_query_id] += 100000.0
unmatch_id = torch.nonzero(matching_matrix.sum(0) == 0, as_tuple=False).squeeze(1)
for gt_idx in unmatch_id:
pos_idx = torch.argmin(cost[:, gt_idx])
matching_matrix[:, gt_idx][pos_idx] = 1.0
if (matching_matrix.sum(1) > 1).sum() > 0: # If a query matches more than one gt
_, cost_argmin = torch.min(cost[anchor_matching_gt > 1],
dim=1) # find gt for these queries with minimal cost
matching_matrix[anchor_matching_gt > 1] *= 0 # reset mapping relationship
matching_matrix[anchor_matching_gt > 1, cost_argmin,] = 1 # keep gt with minimal cost
assert not (matching_matrix.sum(0) == 0).any()
selected_query = matching_matrix.sum(1) > 0
gt_indices = matching_matrix[selected_query].max(1)[1]
assert selected_query.sum() == len(gt_indices)
cost[matching_matrix == 0] = cost[matching_matrix == 0] + float('inf')
matched_query_id = torch.min(cost, dim=0)[1]
return (selected_query, gt_indices), matched_query_id
|