Hich Tala commited on
Commit
383df45
·
1 Parent(s): e396659

Remove wandb logging

Browse files
Files changed (1) hide show
  1. modeling_diffusiondet.py +3 -9
modeling_diffusiondet.py CHANGED
@@ -10,7 +10,6 @@ import torch.nn.functional as F
10
  from torchvision import ops
11
  from torchvision.ops.feature_pyramid_network import FeaturePyramidNetwork
12
  from transformers import PreTrainedModel
13
- import wandb
14
 
15
  from transformers.utils.backbone_utils import load_backbone
16
  from .configuration_diffusiondet import DiffusionDetConfig
@@ -48,6 +47,7 @@ def cosine_beta_schedule(timesteps, s=0.008):
48
  betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
49
  return torch.clip(betas, 0, 0.999)
50
 
 
51
  @dataclass
52
  class DiffusionDetOutput(ModelOutput):
53
  """
@@ -60,6 +60,7 @@ class DiffusionDetOutput(ModelOutput):
60
  labels: torch.IntTensor = None
61
  pred_boxes: torch.FloatTensor = None
62
 
 
63
  class DiffusionDet(PreTrainedModel):
64
  """
65
  Implement DiffusionDet
@@ -277,15 +278,8 @@ class DiffusionDet(PreTrainedModel):
277
  loss_dict[k] *= weight_dict[k]
278
  loss_dict['loss'] = sum([loss_dict[k] for k in weight_dict.keys()])
279
 
280
- wandb_logs_values = ["loss_ce", "loss_bbox", "loss_giou"]
281
-
282
- if self.training:
283
- wandb.log({f'train/{k}': v.detach().cpu().numpy() for k, v in loss_dict.items() if k in wandb_logs_values})
284
- else:
285
- wandb.log({f'eval/{k}': v.detach().cpu().numpy() for k, v in loss_dict.items() if k in wandb_logs_values})
286
-
287
  if not self.training:
288
- pred_logits, pred_labels, pred_boxes = self.ddim_sample(pixel_values, features, images_whwh)
289
  return DiffusionDetOutput(
290
  loss=loss_dict['loss'],
291
  loss_dict=loss_dict,
 
10
  from torchvision import ops
11
  from torchvision.ops.feature_pyramid_network import FeaturePyramidNetwork
12
  from transformers import PreTrainedModel
 
13
 
14
  from transformers.utils.backbone_utils import load_backbone
15
  from .configuration_diffusiondet import DiffusionDetConfig
 
47
  betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
48
  return torch.clip(betas, 0, 0.999)
49
 
50
+
51
  @dataclass
52
  class DiffusionDetOutput(ModelOutput):
53
  """
 
60
  labels: torch.IntTensor = None
61
  pred_boxes: torch.FloatTensor = None
62
 
63
+
64
  class DiffusionDet(PreTrainedModel):
65
  """
66
  Implement DiffusionDet
 
278
  loss_dict[k] *= weight_dict[k]
279
  loss_dict['loss'] = sum([loss_dict[k] for k in weight_dict.keys()])
280
 
 
 
 
 
 
 
 
281
  if not self.training:
282
+ pred_logits, pred_labels, pred_boxes = self.ddim_sample(pixel_values, features, images_whwh)
283
  return DiffusionDetOutput(
284
  loss=loss_dict['loss'],
285
  loss_dict=loss_dict,