File size: 4,826 Bytes
995ef3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126


import numpy as np
from tensorflow.keras.preprocessing.image import ImageDataGenerator, load_img, img_to_array
from tensorflow.keras.applications import MobileNetV2
from tensorflow.keras.applications.mobilenet_v2 import preprocess_input
from tensorflow.keras.models import Model
from tensorflow.keras.layers import AveragePooling2D, Dropout, Flatten, Dense, Input
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.regularizers import l2
from tensorflow.keras.callbacks import EarlyStopping
from sklearn.model_selection import train_test_split
import os
from PIL import UnidentifiedImageError
import keras_tuner as kt

# --- Data Loading and Preprocessing ---
data_dir = "dataset"
categories = ["with_mask", "without_mask"]
data = []
labels = []

print("Loading and preprocessing images for tuning...")
for category in categories:
    path = os.path.join(data_dir, category)
    for img_name in os.listdir(path):
        img_path = os.path.join(path, img_name)
        try:
            image = load_img(img_path, target_size=(224, 224))
            image = img_to_array(image)
            image = preprocess_input(image)
            data.append(image)
            labels.append(0 if category == "with_mask" else 1)
        except UnidentifiedImageError:
            print(f"Skipped invalid image file: {img_path}")
        except Exception as e:
            print(f"Error loading image {img_path}: {e}")
print(f"Loaded {len(data)} images.")

data = np.array(data, dtype="float32")
labels = to_categorical(labels)

x_train, x_test, y_train, y_test = train_test_split(data, labels, test_size=0.2, stratify=labels, random_state=42)
print(f"Training samples: {len(x_train)}, Validation samples: {len(x_test)}")

# --- Data Augmentation Configuration ---
aug = ImageDataGenerator(
    rotation_range=30,
    zoom_range=0.2,
    width_shift_range=0.2,
    height_shift_range=0.2,
    shear_range=0.2,
    horizontal_flip=True,
    brightness_range=[0.7, 1.3],
    channel_shift_range=50,
    fill_mode="nearest"
)

# --- Model Building Function for KerasTuner ---
def build_model(hp):
    base_model = MobileNetV2(weights="imagenet", include_top=False, input_tensor=Input(shape=(224, 224, 3)))

    for layer in base_model.layers[:-20]:
        layer.trainable = False

    head_model = base_model.output
    head_model = AveragePooling2D(pool_size=(7, 7))(head_model)
    head_model = Flatten()(head_model)

    # Define hyperparameter search spaces
    hp_units = hp.Int('units', min_value=64, max_value=256, step=32, default=128)
    hp_l2_reg = hp.Choice('l2_regularizer', values=[1e-4, 1e-3, 1e-2], default=1e-2)
    hp_dropout = hp.Float('dropout_rate', min_value=0.2, max_value=0.6, step=0.1, default=0.5)
    hp_learning_rate = hp.Choice('learning_rate', values=[1e-5, 5e-5, 1e-4], default=1e-5)

    head_model = Dense(units=hp_units, activation="relu", kernel_regularizer=l2(hp_l2_reg))(head_model)
    head_model = Dropout(hp_dropout)(head_model)
    head_model = Dense(2, activation="softmax")(head_model)

    model = Model(inputs=base_model.input, outputs=head_model)

    model.compile(optimizer=Adam(learning_rate=hp_learning_rate),
                  loss="categorical_crossentropy",
                  metrics=["accuracy"])
    return model

# --- Hyperparameter Tuning Setup and Execution ---
tuner = kt.Hyperband(
    build_model,
    objective='val_accuracy',
    max_epochs=30,
    factor=3,
    directory='keras_tuner_dir',
    project_name='mask_detector_tuning_run'
)

# EarlyStopping callback for each trial during tuning
early_stopping_tuner = EarlyStopping(
    monitor='val_loss',
    patience=7,
    restore_best_weights=True
)

print("\nStarting hyperparameter search. This may take a while...")
tuner.search(aug.flow(x_train, y_train, batch_size=32),
             validation_data=(x_test, y_test),
             steps_per_epoch=len(x_train) // 32,
             epochs=30,
             callbacks=[early_stopping_tuner])

print("\nHyperparameter search complete.")

# Get the best hyperparameters found
best_hps = tuner.get_best_hyperparameters(num_trials=1)[0]

print(f"\n==========================================")
print(f"  Best Hyperparameters Found:")
print(f"  ------------------------------------------")
print(f"  Units in Dense layer: {best_hps.get('units')}")
print(f"  L2 Regularizer strength: {best_hps.get('l2_regularizer')}")
print(f"  Dropout Rate: {best_hps.get('dropout_rate')}")
print(f"  Learning Rate: {best_hps.get('learning_rate')}")
print(f"==========================================\n")

print("Please take note of these hyperparameters and use them to define your model in 'model.py'.")