import cv2 import numpy as np from tensorflow.keras.models import load_model from tensorflow.keras.preprocessing.image import img_to_array from tensorflow.keras.applications.mobilenet_v2 import preprocess_input model = load_model("mask_detector_final_model.keras") face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml") cap = cv2.VideoCapture(0) while True: ret, frame = cap.read() if not ret: break gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale(gray, 1.1, 4) for (x, y, w, h) in faces: face = frame[y:y + h, x:x + w] face = cv2.resize(face, (224, 224)) face = img_to_array(face) face = preprocess_input(face) face = np.expand_dims(face, axis=0) (mask, withoutMask) = model.predict(face)[0] confidence = max(mask, withoutMask) print(f"Probabilities: Mask={mask:.4f}, No Mask={withoutMask:.4f}") if confidence > 0.9: label = "Mask" if mask > withoutMask else "No Mask" color = (0, 255, 0) if label == "Mask" else (0, 0, 255) cv2.putText(frame, f"{label}", (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.45, color, 2) cv2.rectangle(frame, (x, y), (x + w, y + h), color, 2) cv2.imshow("Face Mask Detector", frame) if cv2.waitKey(1) & 0xFF == ord('q') or cv2.getWindowProperty("Face Mask Detector", cv2.WND_PROP_VISIBLE) < 1: break cap.release() cv2.destroyAllWindows()