File size: 13,664 Bytes
3a7ba3c e24ec36 4c17df7 e24ec36 206a44a e24ec36 c2d90cb e24ec36 206a44a e24ec36 4c17df7 e24ec36 d35be68 e24ec36 206a44a e24ec36 206a44a e24ec36 206a44a 91952ec e24ec36 91952ec e24ec36 91952ec e24ec36 91952ec e24ec36 91952ec e24ec36 c2d90cb e24ec36 c2d90cb 3a7ba3c e24ec36 c2d90cb e24ec36 d35be68 e24ec36 c2d90cb e24ec36 3a7ba3c e24ec36 3a7ba3c e24ec36 c2d90cb e24ec36 c2d90cb 3a7ba3c e24ec36 c2d90cb e24ec36 c2d90cb e24ec36 c2d90cb 3a7ba3c c2d90cb d35be68 e24ec36 d35be68 e24ec36 3a7ba3c c2d90cb e24ec36 c2d90cb e24ec36 c2d90cb e24ec36 c2d90cb e24ec36 206a44a e24ec36 3a7ba3c e24ec36 91952ec e24ec36 91952ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 |
# runMovieCorpus.py
import os
from playsound3 import playsound
import tensorflow
from chatbotTrainer import ChatbotTrainer
import time
import numpy as np
import random
import pdb
import sys
import matplotlib.pyplot as plt
# Personal files
from preprocessed_dialogs import dialog_data
class CorpusTrainer:
def __init__(self):
self.runningTrouble = []
self.choices_yes = ["yes", "ya", "yeah", "yessir", "yesir", "y", "ye", "yah"]
self.exit_commands = ["exit", "quit", "stop", "x", "q", ""]
self.log_file = "failure_history.txt"
self.counter = 0
self.bad_count = 0
self.top_num = 0
self.percent_reset = 10.0 # Percent to track failure rate, start at 75% lower to 10% over training success rise(ex of failure history: 7<75%>,20<75%>,80<75%>,300<50%>)
self.time_sleep = 10
self.processed_dialogs = dialog_data
self.notification_sound = "AlienNotification.mp3" # Set notification sound here
# All EMPTY lists are for scripts if ran for context
self.chatbot_trainer = None
self.conversation_id = None
self.all_input_texts = []
self.all_target_texts = []
self.failure_history = []
self.speakerList = []
self.speaker_input_texts = []
self.speaker_target_texts = []
self.speakerListData = None
self.troubleListData = None
self.troubleList = []
self.allTogether = []
# Failsafe Trigger
self.failsafe_trigger = False
# Import Speakers
with open('trained_speakers.txt', 'r') as file:
self.speakerListData = file.read().splitlines()
with open('troubled_speakers.txt', 'r') as file:
self.troubleListData = file.read().splitlines()
# We Reset the file after trouble list reset(Trouble List should be empty before and after this step)
self.resetTroubled()
# We clean up the trained
self.speakerList = self.cleanupTrained(self.speakerListData)
print("Num GPUs Available: ", len(tensorflow.config.experimental.list_physical_devices('GPU')))
# Initialize the corpus (Needed for convo-kit to initialize) Only needed when reading/creating the dialogs
self.corpus_path = '/root/.convokit/saved-corpora/movie-corpus'
self.chatbot_trainer = ChatbotTrainer()
self.chatbot_trainer.load_corpus(self.corpus_path)
def main(self, chatbot_trainer, user_choice, dialog_data, topConvo=0, top_num=0, play_notification=0):
if play_notification or user_choice in self.exit_commands:
# exit()
pass
if play_notification in self.choices_yes:
play_notification = 1
elif play_notification not in self.choices_yes:
play_notification = 0
# Debug Lines
# pdb.set_trace()
# print(list(self.speakerList))
self.chatbot_trainer = chatbot_trainer
self.cleanupTroubled()
for x in range(len(self.processed_dialogs.keys())):
topConvo += 1
self.counter += 1
randomconvo = random.randint(1, len(self.processed_dialogs.keys()))
speaker = str(randomconvo)
dialog_pairs = self.processed_dialogs[speaker]
if len(dialog_pairs) < 3:
print(f"Conversation {speaker} skipped for NOT providing enough data... ")
continue
# Input conversation data into input and target data from dialog pairs
for input_text, target_text in dialog_pairs:
self.speaker_input_texts = []
self.speaker_target_texts = []
input_shape = np.array(input_text).shape
target_shape = np.array(target_text).shape
if input_shape in [(1, 64), (1, 63)] or target_shape in [(1, 64), (1, 63)]:
print(f"Conversation {speaker} skipped for NOT providing properly shaped data... ")
continue
if len(input_text) < 3 or len(target_text) < 3:
print(f"Conversation {speaker} skipped for NOT providing enough data... ")
continue
if input_text != "" and target_text != "":
self.speaker_input_texts.append(input_text.strip())
self.all_input_texts.append(input_text.strip())
self.speaker_target_texts.append(target_text.strip())
self.all_target_texts.append(target_text.strip())
if self.failsafe_trigger is False:
if speaker not in self.speakerList:
self.conversation_id = int(speaker)
if self.conversation_id > self.top_num:
self.top_num = self.conversation_id
print(f"Conversation: {self.conversation_id}")
# Limit is defined within -3 of the early_patience, meaning if it gets close we're adding it to the list
limit = self.chatbot_trainer.early_patience - 3
# Failsafe for too long num_words
if self.chatbot_trainer.tokenizer.num_words > self.chatbot_trainer.max_vocabulary:
print("MAXIMUM Vocabulary Reached! Quitting Now... ")
# time.sleep(1)
if play_notification == 1:
playsound(notification_sound)
# time.sleep(1)
return self.chatbot_trainer, user_choice, dialog_data, topConvo, self.top_num, self.failsafe_trigger
data = [input_text, target_text]
try:
# User Choices
if user_choice in self.choices_yes and play_notification in self.choices_yes:
self.user_yes(speaker=speaker, data=data, limit=limit, play_notification=play_notification)
elif user_choice in self.choices_yes and play_notification not in self.choices_yes:
self.user_yes(speaker=speaker, data=data, limit=limit, play_notification=play_notification)
elif user_choice not in self.choices_yes and play_notification not in self.choices_yes:
self.user_no(speaker=speaker, data=data, limit=limit, play_notification=play_notification)
except ValueError:
print("Skipped Conversation {speaker}... Trying again...")
continue
except Exception as e:
print(e)
def user_yes(self, data, speaker, limit, play_notification):
self.chatbot_trainer.train_model(data[0], data[1], str(self.conversation_id), speaker)
self.runningTrouble = self.chatbot_trainer.running_trouble
if speaker not in self.speakerList and len(self.runningTrouble) < limit:
self.speakerList.append(speaker)
with open("trained_speakers.txt", 'a') as f:
f.write(f"{speaker}\n")
elif len(self.runningTrouble) > limit:
self.bad_count += 1
self.troubleList.append(speaker)
with open("troubled_speakers.txt", 'a') as f:
f.write(f"{speaker}\n")
self.allTogether = self.resetTogether()
topConvo = len(self.allTogether)
self.bad_count = len(self.troubleList)
# Debug Lines
# print(f"Trouble List: {len(self.troubleList)}")
# print(f"Bad Count: {self.bad_count}")
# print(f"Running Trouble: {len(self.runningTrouble)}")
percent_running = self.runningPercent(len(self.troubleList), self.counter)
self.failure_history.append(len(self.troubleList))
if percent_running is None:
percent_running = 0.0
self.chatbot_trainer.logger.info(f"Running Percentage Failure: {percent_running}%")
# We check for speaker vs top num achieved successfully in self.speakerList
# topConvo is a larger buffer for models that may take longer to learn but for dynamic learning. self.top_num is for running consecutive and is default in that situation
print(f"Now is the time to quit if need be... ")
if play_notification == 1:
playsound(notification_sound)
if percent_running is not None:
# Note: The run adds to the trained speaker list which is successful trainings. If it's not in that list, when it comes up again it will be trained another time.
if percent_running > self.percent_reset:
print("Logging Failures... Resetting... Failure Rate is Greater than {self.percent_reset}%...")
answer_1 = input("Show Failures for this Run? \n>")
if answer_1 in self.exit_commands:
quit()
show_file = True if answer_1 in self.choices_yes else False
answer_2 = input("Save Failures for this Run? \n>")
if answer_2 in self.exit_commands:
quit()
save_file = True if answer_1 in self.choices_yes else False
self.log_failures(len(self.troubleList), self.log_file)
self.plot_failures(self.log_file, show_file=show_file, save_file=save_file)
print("Plotting Failures... See failures_plot.png for more information... ")
# Clear Speakers
delete_speakers = input("Would you like to clear trained_speakers.txt? \nThis is useful for touching on successful conversations... \n>")
if delete_speakers in self.choices_yes:
with open('trained_speakers.txt', 'w') as f:
f.write("")
# This resets the run for the failure rate to reset
input('Enter to Continue... (This will reset the run) ')
return self.main(self.chatbot_trainer, user_choice, dialog_data, topConvo, self.top_num)
# Add more settings like whether to save the model or not
input("\nEnter to Continue... ")
def user_no(self, data, speaker, limit, play_notification):
self.chatbot_trainer.train_model(data[0], data[1], str(self.conversation_id), speaker)
if speaker not in self.speakerList and len(self.runningTrouble) < limit:
self.speakerList.append(speaker)
with open("trained_speakers.txt", 'a') as f:
f.write(f"{speaker}\n")
elif len(self.runningTrouble) > limit:
self.bad_count += 1
self.troubleList.append(speaker)
with open("troubled_speakers.txt", 'a') as f:
f.write(f"{speaker}\n")
# Find Top Convo
self.allTogether = self.resetTogether()
topConvo = len(self.allTogether)
self.bad_count = len(self.troubleList)
# Debug Lines; But pretty useful to see how it works
print(f"Trouble List: {len(self.troubleList)}")
print(f"Bad Count: {self.bad_count}")
print(f"Number of Conversations(This Run): {self.counter}")
print(f"Number of Conversations Combined: {topConvo}")
print(f"Running Trouble: {len(self.runningTrouble)}")
percent_running = self.runningPercent(len(self.troubleList), topConvo)
self.failure_history.append(len(self.troubleList))
if percent_running is None:
percent_running = 0.0
self.chatbot_trainer.logger.info(f"Running Percentage Failure: {percent_running}%")
print(f"Now is the time to quit if need be... ")
if play_notification == 1:
playsound(notification_sound)
for x in range(self.time_sleep):
# time.sleep(1)
print(f"Next convo in:{self.time_sleep-x}")
if percent_running is not None:
# Note: The run adds to the trained speaker list which is successful trainings. If it's not in that list, when it comes up again it will be trained another time.
if percent_running > self.percent_reset:
self.log_failures(len(self.troubleList), self.log_file)
print("Plotting Failures... See failures_plot.png for more information... ")
self.plot_failures(self.log_file)
if play_notification == 1:
playsound(notification_sound)
print(f"Resetting... Failure Rate is Greater than {self.percent_reset}%... For this run.")
# time.sleep(self.time_sleep * 3)
return self.main(self.chatbot_trainer, user_choice, dialog_data, topConvo, self.top_num)
def resetTogether(self):
for speakers in self.speakerList:
if speakers not in self.allTogether:
self.allTogether.append(str(speakers))
for speakers in self.troubleListData:
if speakers not in self.allTogether:
self.allTogether.append(str(speakers))
allTogetherSorted = sorted(self.allTogether)
return allTogetherSorted
def cleanupTrained(self, speakerList):
for data in self.speakerList:
data = data.strip('\n')
if data not in self.speakerList and data not in self.troubleListData:
self.speakerList.append(data)
with open('trained_speakers.txt', 'w') as f:
for speakers in self.speakerList:
f.write(f"{speakers}\n")
self.speakerList = sorted(self.speakerList)
return self.speakerList
def resetTroubled(self):
os.remove('troubled_speakers.txt')
with open('troubled_speakers.txt', 'w') as f:
f.write("")
def cleanupTroubled(self):
tempBin = []
with open('troubled_speakers.txt', 'r') as fr:
data = fr.readlines()
for lines in data:
if lines not in tempBin:
tempBin.append(str(lines).strip('\n'))
tempBin = sorted(tempBin)
with open('troubled_speakers.txt', 'w') as fw:
fw.write("")
for troubled in tempBin:
fw.write(f"{troubled}\n")
def runningPercent(self, list1, list2):
if list1 > 0 and list2 > 0:
x = list1 / list2
percentage = x * 100
percentage = round(percentage, 2)
return percentage
elif list1 == 0:
percentage = 0.0
return percentage
def plot_failures(self, log_file, show_file=False, save_file=False):
# Read stored failures
if not os.path.exists(log_file):
print("No failure data found.")
return
with open("failure_history.txt", "r") as f:
self.failure_history = [int(line.strip()) for line in f.readlines()]
if len(self.failure_history) == 0:
print("No failure data to plot.")
return
# Plot actual failure values
plt.figure(figsize=(10, 6))
plt.plot(self.failure_history, marker='o', linestyle='-', color='red', label='Failures Per Run')
plt.xlabel("Run Iteration")
plt.ylabel("Number of Failures")
plt.title("Failures Before Restart Over Time")
plt.legend()
plt.grid(True)
if save_file:
# Save plot
plt.savefig("failures_plot.png")
if show_file:
plt.show()
def log_failures(self, num_failures, log_file):
# Append failure count to file
with open(log_file, "a") as f:
f.write(f"{num_failures}\n")
print(f"Logged {num_failures} failures.")
def run():
app = CorpusTrainer()
user_choice = input(f"Run Supervised?({app.chatbot_trainer.model_filename})\n>")
play_notification = input(f"Would you like to play a notification after each training?\nHelps with manual stopping before max_vocabulary reached... \n>")
app.main(chatbot_trainer=app.chatbot_trainer, user_choice=user_choice, dialog_data=dialog_data, play_notification=play_notification)
if __name__ == "__main__":
while True:
run() |