Delete multi_omics_model.py
Browse files- multi_omics_model.py +0 -127
multi_omics_model.py
DELETED
@@ -1,127 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from transformers import PreTrainedModel
|
3 |
-
|
4 |
-
from genomics_research.biobrain_p1.porting_to_pytorch.configs.chatNT_config import (
|
5 |
-
ChatNTConfig,
|
6 |
-
)
|
7 |
-
from genomics_research.biobrain_p1.porting_to_pytorch.models.biobrain_decoder import (
|
8 |
-
TorchBioBrainDecoder,
|
9 |
-
)
|
10 |
-
from genomics_research.biobrain_p1.porting_to_pytorch.models.biobrain_encoder import (
|
11 |
-
TorchBioBrainEncoder,
|
12 |
-
)
|
13 |
-
from genomics_research.biobrain_p1.porting_to_pytorch.models.perceiver_resampler_projection import ( # noqa
|
14 |
-
TorchMultiModalPerceiverResamplerProjection,
|
15 |
-
)
|
16 |
-
|
17 |
-
|
18 |
-
class TorchMultiOmicsModel(PreTrainedModel):
|
19 |
-
config_class = ChatNTConfig
|
20 |
-
|
21 |
-
def __init__(self, config: ChatNTConfig) -> None:
|
22 |
-
super().__init__(config=config)
|
23 |
-
self.gpt_config = config.gpt_config
|
24 |
-
self.esm_config = config.esm_config
|
25 |
-
self.perceiver_resampler_config = config.perceiver_resampler_config
|
26 |
-
self.seq_token_id = config.seq_token_id
|
27 |
-
self.bio_pad_token_id = config.bio_pad_token_id
|
28 |
-
self.english_pad_token_id = config.english_pad_token_id
|
29 |
-
|
30 |
-
# Correct seq_token_id
|
31 |
-
self.seq_token_id -= 1
|
32 |
-
|
33 |
-
self.biobrain_encoder = TorchBioBrainEncoder(esm_config=self.esm_config)
|
34 |
-
self.biobrain_decoder = TorchBioBrainDecoder(
|
35 |
-
gpt_config=self.gpt_config, seq_token_id=self.seq_token_id
|
36 |
-
)
|
37 |
-
self.projection_model = TorchMultiModalPerceiverResamplerProjection(
|
38 |
-
perceiver_resampler_config=self.perceiver_resampler_config,
|
39 |
-
input_embed_dim=self.esm_config.embed_dim,
|
40 |
-
embed_dim=self.gpt_config.embed_dim,
|
41 |
-
english_vocab_size=self.gpt_config.vocab_size,
|
42 |
-
bio_pad_token_id=self.bio_pad_token_id,
|
43 |
-
english_pad_token_id=self.english_pad_token_id,
|
44 |
-
)
|
45 |
-
|
46 |
-
def forward(
|
47 |
-
self,
|
48 |
-
multi_omics_tokens_ids: tuple[torch.Tensor, torch.Tensor],
|
49 |
-
projection_english_tokens_ids: torch.Tensor,
|
50 |
-
projected_bio_embeddings: torch.Tensor = None,
|
51 |
-
) -> dict[str, torch.Tensor]:
|
52 |
-
"""
|
53 |
-
|
54 |
-
Args:
|
55 |
-
multi_omics_tokens_ids (Tuple[torch.Tensor, torch.Tensor]):
|
56 |
-
english_tokens_ids: Represents the prompt tokens (english tokens)
|
57 |
-
Shape (batch_size, num_english_tokens)
|
58 |
-
|
59 |
-
bio_tokens_ids: Represents the bio sequences tokens
|
60 |
-
Shape (batch_size, num_bio_sequences, num_bio_tokens)
|
61 |
-
|
62 |
-
projection_english_tokens_ids (torch.Tensor):
|
63 |
-
Shape (batch_size, num_english_tokens)
|
64 |
-
|
65 |
-
projected_bio_embeddings (projected_bio_embeddings, optional):
|
66 |
-
Shape (batch_size, num_bio_sequencse, ?, embed_dim).
|
67 |
-
Defaults to None.
|
68 |
-
|
69 |
-
Returns:
|
70 |
-
dict[str, torch.Tensor] containing:
|
71 |
-
- logits:
|
72 |
-
Shape (batch_size, num_tokens, vocab_size)
|
73 |
-
|
74 |
-
- projected_bio_embeddings:
|
75 |
-
Shape (batch_size, num_bio_sequences, ?, embed_dim)
|
76 |
-
"""
|
77 |
-
english_token_ids, bio_token_ids = multi_omics_tokens_ids
|
78 |
-
|
79 |
-
# Replace config.vocab_size value in english tokens
|
80 |
-
# We do this because the default vocab size (32000) doesn't match with the
|
81 |
-
# number of tokens because of seq_token_id(=32000) that was added
|
82 |
-
# Therefore, we will put seq_token_id to 31999
|
83 |
-
# (I will also put token n°31999 to 0, which is for unknown token)
|
84 |
-
# This is a workaround to avoid having to change the vocab size in the config
|
85 |
-
vocab_size = self.gpt_config.vocab_size
|
86 |
-
# Replace vocab
|
87 |
-
english_token_ids[english_token_ids == vocab_size - 1] = 0
|
88 |
-
projection_english_tokens_ids[
|
89 |
-
projection_english_tokens_ids == vocab_size - 1
|
90 |
-
] = 0
|
91 |
-
english_token_ids[english_token_ids == vocab_size] = vocab_size - 1
|
92 |
-
projection_english_tokens_ids[projection_english_tokens_ids == vocab_size] = (
|
93 |
-
vocab_size - 1
|
94 |
-
)
|
95 |
-
|
96 |
-
if bio_token_ids is None:
|
97 |
-
projected_bio_embeddings = None
|
98 |
-
else:
|
99 |
-
num_bio_sequences = bio_token_ids.shape[1]
|
100 |
-
|
101 |
-
if projected_bio_embeddings is None:
|
102 |
-
# Compute bio sequences embeddings
|
103 |
-
bio_embeddings_list = [
|
104 |
-
self.biobrain_encoder(bio_token_ids=bio_token_ids[:, bio_seq_num])
|
105 |
-
for bio_seq_num in range(num_bio_sequences)
|
106 |
-
]
|
107 |
-
|
108 |
-
# Project these embeddings
|
109 |
-
projected_bio_embeddings = [
|
110 |
-
self.projection_model(
|
111 |
-
bio_token_ids=bio_token_ids[:, bio_seq_num],
|
112 |
-
bio_embeddings=bio_embeddings,
|
113 |
-
english_token_ids=projection_english_tokens_ids,
|
114 |
-
)
|
115 |
-
for bio_seq_num, bio_embeddings in enumerate(bio_embeddings_list)
|
116 |
-
]
|
117 |
-
projected_bio_embeddings = torch.stack(projected_bio_embeddings, dim=1)
|
118 |
-
|
119 |
-
# decode
|
120 |
-
logits = self.biobrain_decoder(
|
121 |
-
english_token_ids=english_token_ids,
|
122 |
-
projected_bio_embeddings=projected_bio_embeddings,
|
123 |
-
)
|
124 |
-
|
125 |
-
outs = {"logits": logits, "projected_bio_embeddings": projected_bio_embeddings}
|
126 |
-
|
127 |
-
return outs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|