File size: 26,414 Bytes
8f7201c
 
3c657e7
 
8f7201c
 
 
 
 
 
 
 
 
 
 
 
 
 
73fb208
8f7201c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c657e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f7201c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
import logging
import math
from dataclasses import dataclass
from typing import Any, Optional, Tuple

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F  # noqa: N812
from transformers import PretrainedConfig, PreTrainedModel


@dataclass
class RotaryEmbeddingConfig:
    """
    Parameters to initialize the RotaryEmbedding layer. The rescaling factor allows
    to adapt the rotary embeddings to larger lengths than what was used for training.
    One of this strategy is presented in the Yarn paper: https://arxiv.org/pdf/2309.00071.pdf. # noqa
    Args:b
    """

    rescaling_factor: Optional[float]


class RotaryEmbedding(torch.nn.Module):
    """
    Rotary position embeddings based on those in
    [RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer).
    Query and keys are transformed by rotation
    matrices which depend on their relative positions.
    """

    def __init__(self, dim: int, rotary_embedding_config: RotaryEmbeddingConfig):
        super().__init__()

        # Extract argument from the config
        self.rescaling_factor = rotary_embedding_config.rescaling_factor
        self.upper_freq = 10000
        self.dim = dim

        self._seq_len_cached = None
        self._cos_cached = None
        self._sin_cached = None

    def _apply_rotary_pos_emb(
        self,
        heads: torch.Tensor,
        cos: torch.Tensor,
        sin: torch.Tensor,
    ) -> torch.Tensor:
        """ """
        x_first, x_second = (
            heads[..., : heads.shape[-1] // 2],
            heads[..., heads.shape[-1] // 2 :],
        )

        first_part = x_first * cos - x_second * sin
        second_part = x_second * cos + x_first * sin

        return torch.cat((first_part, second_part), dim=-1)

    def _compute_cos_sin_tables(
        self, x: torch.Tensor, inv_freq: torch.Tensor, seq_dimension: int = 2
    ) -> tuple[torch.Tensor, torch.Tensor]:
        seq_len = x.shape[seq_dimension]
        # Reset the tables if the sequence length has changed,
        # or if we're on a new device (possibly due to tracing for instance)
        self._seq_len_cached = seq_len
        t = torch.arange(x.shape[seq_dimension], device=x.device).type_as(inv_freq)
        freqs = torch.einsum("i, j -> ij", t, inv_freq)

        self._cos_cached = torch.cos(freqs)[None, :, None, :]
        self._sin_cached = torch.sin(freqs)[None, :, None, :]
        return self._cos_cached, self._sin_cached

    def forward(
        self, q: torch.Tensor, k: torch.Tensor
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        if self.rescaling_factor is None:
            inv_freq = 1.0 / (
                self.upper_freq ** (torch.arange(0, self.dim, 2).float() / self.dim)
            )
        else:
            updated_base = self.upper_freq * (
                self.rescaling_factor ** (self.dim / (self.dim - 2))
            )
            inv_freq = 1.0 / (
                updated_base ** (torch.arange(0, self.dim, 2).float() / self.dim)
            )

        self._cos_cached, self._sin_cached = self._compute_cos_sin_tables(
            q,
            inv_freq,
            seq_dimension=-3,
        )

        return (
            self._apply_rotary_pos_emb(q, self._cos_cached, self._sin_cached),
            self._apply_rotary_pos_emb(k, self._cos_cached, self._sin_cached),
        )


class ResidualConvBlock(nn.Module):
    """
    Conv Block with Residual connection.
    """

    def __init__(
        self, dim_in: int, dim_out: int, layer_norm_shape: int, kernel_size: int = 1
    ):
        super().__init__()
        self.conv_block = ConvBlock(
            dim_in=dim_in,
            dim_out=dim_out,
            layer_norm_shape=layer_norm_shape,
            kernel_size=kernel_size,
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        y = self.conv_block(x)
        return x.reshape(y.shape) + y


class ConvBlock(nn.Module):
    """
    Conv Block.
    """

    def __init__(
        self, dim_in: int, dim_out: int, layer_norm_shape: int, kernel_size: int = 1
    ):
        super().__init__()
        self.conv = nn.Conv1d(
            in_channels=dim_in,
            out_channels=dim_out,
            kernel_size=kernel_size,
            padding="same",
        )
        self.layer_norm = nn.LayerNorm(layer_norm_shape, eps=1e-5)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = x.permute(0, 2, 1)
        x = self.layer_norm(x)
        x = x.permute(0, 2, 1)
        x = self.conv(x)
        x = F.gelu(x, approximate="tanh")
        return x


class ConvTowerBlock(nn.Module):
    def __init__(
        self,
        dim_in: int,
        dim_out: int,
        conv_layer_norm_shape: int,
        resconv_layer_norm_shape,
        kernel_size: int,
    ) -> None:
        super().__init__()
        self.conv_layer = ConvBlock(
            dim_in=dim_in,
            dim_out=dim_out,
            layer_norm_shape=conv_layer_norm_shape,
            kernel_size=kernel_size,
        )
        self.res_conv = ResidualConvBlock(
            dim_in=dim_out,
            dim_out=dim_out,
            layer_norm_shape=resconv_layer_norm_shape,
            kernel_size=1,
        )
        self.avg_pool = nn.AvgPool1d(kernel_size=2, stride=2)

    def forward(self, x: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
        residual = x
        x = self.conv_layer(x)
        x = self.res_conv(x)
        x = self.avg_pool(x)
        return x, residual


class ResidualDeConvBlock(nn.Module):
    """
    Conv Block with Residual connection.
    """

    def __init__(
        self,
        dim_in: int,
        dim_out: int,
        layer_norm_shape: int,
        kernel_size: int = 1,
        stride: int = 1,
    ):
        super().__init__()
        self.deconv_block = DeConvBlock(
            dim_in=dim_in,
            dim_out=dim_out,
            layer_norm_shape=layer_norm_shape,
            kernel_size=kernel_size,
            stride=stride,
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        y = self.deconv_block(x)
        return x.reshape(y.shape) + y


class DeConvBlock(nn.Module):
    """
    DeConv Block.
    """

    def __init__(
        self,
        dim_in: int,
        dim_out: int,
        layer_norm_shape: int,
        kernel_size: int = 1,
        stride: int = 1,
    ):
        super().__init__()
        self.deconv = nn.ConvTranspose1d(
            in_channels=dim_in,
            out_channels=dim_out,
            kernel_size=kernel_size,
            stride=stride,
            padding=0,
        )
        self.layer_norm = nn.LayerNorm(layer_norm_shape)
        self.kernel_size = kernel_size

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = x.permute(0, 2, 1)
        x = self.layer_norm(x)
        x = x.permute(0, 2, 1)
        x = self.deconv(x)
        if self.kernel_size == 5:
            # handle the special case where haiku
            # deconv removes padding automatically
            x = x[:, :, 1:-2]
        x = F.gelu(x, approximate="tanh")
        return x


class DeConvTowerBlock(nn.Module):
    def __init__(
        self,
        dim_in: int,
        dim_out: int,
        kernel_size: int,
        conv_layer_norm_shape: int,
        resconv_layer_norm_shape: int,
        stride: int = 2,
    ):
        super().__init__()
        self.deconv_block = DeConvBlock(
            dim_in=dim_in,
            dim_out=dim_out,
            layer_norm_shape=conv_layer_norm_shape,
            kernel_size=kernel_size,
            stride=stride,
        )
        self.res_deconv_block = ResidualDeConvBlock(
            dim_in=dim_out,
            dim_out=dim_out,
            layer_norm_shape=resconv_layer_norm_shape,
            kernel_size=1,
        )

    def forward(self, x: torch.Tensor, res: torch.Tensor) -> torch.Tensor:
        x = self.deconv_block(x)
        x = self.res_deconv_block(x)
        x = x + res
        return x


class MultiHeadAttention(nn.Module):
    def __init__(
        self,
        num_heads: int,
        key_size: int,
        rotary_embedding_config: Optional[RotaryEmbeddingConfig] = None,
        add_bias_kv: bool = False,
        value_size: Optional[int] = None,
        model_size: Optional[int] = None,
        name: Optional[str] = None,
    ):
        super().__init__()
        if not model_size:
            model_size = key_size
        if not value_size:
            value_size = key_size
        self.model_size = model_size
        self.key_size = key_size
        self.value_size = value_size
        self.add_bias_kv = add_bias_kv
        self.name = name
        self.num_heads = num_heads
        self._rotary_embedding_config = rotary_embedding_config

        self.w_k = nn.Linear(self.model_size, self.num_heads * self.key_size)
        self.w_q = nn.Linear(self.model_size, self.num_heads * self.key_size)
        self.w_v = nn.Linear(self.model_size, self.num_heads * self.value_size)
        self.output = nn.Linear(self.num_heads * self.value_size, self.model_size)
        if self._rotary_embedding_config:
            self._rotary_embedding = RotaryEmbedding(
                self.key_size, self._rotary_embedding_config
            )

    def apply_rotary_embeddings(
        self,
        query: torch.Tensor,
        key: torch.Tensor,
    ) -> tuple[torch.Tensor, torch.Tensor]:
        """ """
        query, key = self._rotary_embedding(query, key)
        return query, key

    def forward(
        self,
        query: torch.Tensor,
        key: torch.Tensor,
        value: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        attention_weight_bias: Optional[torch.Tensor] = None,
    ) -> dict[str, torch.Tensor]:
        """
        Returns:
            dictionary containing attention weights
            and outputs.
        """
        key_heads = self.w_k(key).reshape(
            (*key.shape[:-1], self.num_heads, self.key_size)
        )
        query_heads = self.w_q(query).reshape(
            (*query.shape[:-1], self.num_heads, self.key_size)
        )
        value_heads = self.w_v(value).reshape(
            (*value.shape[:-1], self.num_heads, self.value_size)
        )
        if self._rotary_embedding_config:
            query_heads, key_heads = self.apply_rotary_embeddings(
                query_heads, key_heads
            )
        attention_weights = torch.einsum(
            "...thd, ...Thd -> ...htT", query_heads, key_heads
        )
        sqrt_key_size = np.sqrt(self.key_size)
        attention_weights = attention_weights / sqrt_key_size
        if attention_mask:
            attention_weights = torch.where(attention_mask, attention_weights, -1e30)
        if attention_weight_bias:
            attention_weights = F.softmax(
                attention_weights + attention_weight_bias, dim=-1
            )
        else:
            attention_weights = F.softmax(attention_weights, dim=-1)
        value_out = torch.einsum(
            "...htT, ...Thd->...thd", attention_weights, value_heads
        )
        value_out = value_out.reshape((*value_out.shape[:-2], -1))
        embeddings = self.output(value_out)

        return {"attention_weights": attention_weights, "embeddings": embeddings}


class SelfAttentionBlock(nn.Module):
    def __init__(
        self,
        num_heads: int,
        embed_dim: int,
        ffn_embed_dim: int,
        key_size: Optional[int] = None,
        add_bias_kv: bool = False,
        add_bias_fnn: bool = True,
        ffn_activation_name: str = "gelu-no-approx",
        use_glu_in_ffn: bool = False,
        layer_norm_eps: float = 1e-5,  # this is the default haiku value
        pre_layer_norm: bool = True,
        name: Optional[str] = None,
        rotary_embedding_config: Optional[RotaryEmbeddingConfig] = None,
    ):
        super().__init__()
        if key_size is None:
            if embed_dim % num_heads != 0:
                raise ValueError(
                    f"The embedding dimension should be divisible by the number of "
                    f"heads, however provided embedding dimension is {embed_dim} and "
                    f"the number of heads is {num_heads}."
                )
            else:
                key_size = embed_dim // num_heads

        # Get ffn activation function
        self._pre_layer_norm = pre_layer_norm
        self._use_glu_in_fnn = use_glu_in_ffn
        # Define layers
        if use_glu_in_ffn:
            # user should multiply ffn_embed_dim by 2/3 when using GLU
            # to keep total number of parameters equal
            # see https://arxiv.org/pdf/2002.05202.pdf. for more details
            # we multiply by 2 here as the output will be split in 2 for GLU
            self.fc1 = nn.Linear(embed_dim, int(2 * ffn_embed_dim), bias=add_bias_fnn)
        else:
            self.fc1 = nn.Linear(embed_dim, ffn_embed_dim, bias=add_bias_fnn)

        self.fc2 = nn.Linear(ffn_embed_dim, embed_dim, bias=add_bias_fnn)

        self.layer_norm_self_attention = nn.LayerNorm(
            embed_dim,
        )
        self.layer_norm_mlp = nn.LayerNorm(embed_dim)
        if ffn_activation_name == "swish":
            self._ffn_activation_fn = nn.SiLU()
        elif ffn_activation_name == "gelu-no-approx":
            self._ffn_activation_fn = lambda x: F.gelu(x, approximate="none")
        else:
            self._ffn_activation_fn = getattr(torch.nn, ffn_activation_name)

        self.mha = MultiHeadAttention(
            num_heads=num_heads,
            key_size=key_size,
            add_bias_kv=add_bias_kv,
            model_size=embed_dim,
            name="self_attention",
            rotary_embedding_config=rotary_embedding_config,
        )

    def mlp(self, embed: torch.Tensor) -> torch.Tensor:

        if self._pre_layer_norm:
            x = self.layer_norm_mlp(embed)
        else:
            x = embed

        if self._use_glu_in_fnn:
            x = self.fc1(x)
            x1, x2 = torch.split(x, split_size_or_sections=x.shape[-1] // 2, dim=-1)
            x = self._ffn_activation_fn(x1) * x2
        else:
            x = self._ffn_activation_fn(self.fc1(x))
        x = self.fc2(x)

        if not self._pre_layer_norm:
            x = self.layer_norm_mlp(x + embed)
        return x

    def forward(
        self,
        x: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        attention_weight_bias: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:

        res = x
        if self._pre_layer_norm:
            x = self.layer_norm_self_attention(x)

        output = self.mha(
            x,
            x,
            x,
            attention_mask=attention_mask,
            attention_weight_bias=attention_weight_bias,
        )

        if not self._pre_layer_norm:
            output["embeddings"] = self.layer_norm_self_attention(
                output["embeddings"] + res
            )

            x = output["embeddings"]
        else:
            x = output["embeddings"]
            x = res + x

        # MLP
        if not self._pre_layer_norm:
            x = self.mlp(x)
        else:
            x = x + self.mlp(x)

        output["embeddings"] = x
        return output


class LMHead(nn.Module):
    def __init__(
        self, dim_in: int, embed_dim: int, dim_out: int, num_hidden_layers: int
    ) -> None:
        """ """
        super().__init__()
        self.num_hidden_layers = num_hidden_layers
        self.linear_layers = nn.ModuleList([nn.Linear(dim_in, embed_dim)])
        self.linear_layers.extend(
            nn.ModuleList(
                [nn.Linear(embed_dim, embed_dim)]  # noqa
                for _ in range(num_hidden_layers - 1)
            )
        )
        self.linear_out = nn.Linear(embed_dim, dim_out)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = F.gelu(x, approximate="tanh")
        for layer in self.linear_layers:
            x = layer(x)
            x = F.gelu(x, approximate="tanh")
        out = self.linear_out(x)
        return out


class MOJOConfig(PretrainedConfig):  # noqa: N801
    model_type = "MOJO"

    def __init__(self, **kwargs: Any) -> None:
        super().__init__(**kwargs)
        self.alphabet_size = kwargs.get(
            "alphabet_size", {"rnaseq": 66, "methylation": 66}
        )
        self.token_embed_dim = kwargs.get("token_embed_dim", 256)
        self.init_gene_embed_dim = kwargs.get("init_gene_embed_dim", 200)
        self.use_gene_embedding = kwargs.get("use_gene_embedding", True)
        self.project_gene_embedding = kwargs.get("project_gene_embedding", True)
        self.sequence_length = kwargs.get("sequence_length", 17_116)  # n_genes
        self.fixed_sequence_length = kwargs.get("fixed_sequence_length", None)
        self.num_downsamples = kwargs.get("num_downsamples", 8)
        self.conv_init_embed_dim = kwargs.get("conv_init_embed_dim", 512)
        self.stem_kernel_shape = kwargs.get("stem_kernel_shape", 15)
        self.embed_dim = kwargs.get("embed_dim", 512)
        self.filter_list = kwargs.get("filter_list", [])
        self.num_attention_heads = kwargs.get("num_attention_heads", 16)
        self.key_size = kwargs.get("key_size", None)
        self.ffn_embed_dim = kwargs.get("ffn_embed_dim", 1_024)
        self.num_layers = kwargs.get("num_layers", 8)
        self.num_hidden_layers_head = kwargs.get("num_hidden_layers_head", 1)

        # return
        self.embeddings_layers_to_save: tuple[int, ...] = kwargs.get(
            "embeddings_layers_to_save", ()
        )
        self.attention_maps_to_save: list[tuple[int, int]] = kwargs.get(
            "attention_maps_to_save", []
        )

        self.__post_init__()

    def __post_init__(self):
        # Validate attention key size
        key_size = self.key_size
        if key_size is None:
            embed_dim = self.embed_dim
            num_attention_heads = self.num_attention_heads
            if not embed_dim % num_attention_heads == 0:
                raise ValueError(
                    f"When no key size is provided, the embedding dimension should be "
                    f"divisible by the number of heads, however provided embedding "
                    f"dimension is {embed_dim} and the number of heads is "
                    f"{num_attention_heads}."
                )
            self.key_size = embed_dim // num_attention_heads

        # Validate gene embedding projection
        use_gene_embedding = self.use_gene_embedding
        if use_gene_embedding:
            init_gene_embed_dim = self.init_gene_embed_dim
            token_embed_dim = self.token_embed_dim
            if init_gene_embed_dim != token_embed_dim:
                project_gene_embedding = self.project_gene_embedding
                if not project_gene_embedding:
                    logging.warning(
                        f"Init gene embedding dimension ({init_gene_embed_dim})"
                        f"different than token embedding dimension ({token_embed_dim})."
                        f"Setting `project_gene_embedding` to True"
                    )
                    self.project_gene_embedding = True

        # Compute fixed_sequence_length
        num_downsamples = self.num_downsamples
        sequence_length = self.sequence_length
        downsample_factor = 2**num_downsamples
        fixed_sequence_length = (
            math.ceil(sequence_length / downsample_factor) * downsample_factor
        )
        self.fixed_sequence_length = fixed_sequence_length

        # Create filters list
        num_downsamples = self.num_downsamples
        filter_list = (
            np.linspace(
                self.conv_init_embed_dim,
                self.embed_dim,
                num_downsamples + 1,
            )
            .astype(int)
            .tolist()
        )
        self.filter_list = filter_list  # noqa


class MOJO(PreTrainedModel):  # noqa: N801
    config_class = MOJOConfig

    def __init__(self, config: MOJOConfig):
        super().__init__(config=config)

        # Embeddings
        self.embedding_layers = nn.ModuleDict(
            {
                omic: nn.Embedding(config.alphabet_size[omic], config.token_embed_dim)
                for omic in config.alphabet_size
            }
        )

        self.gene_embedding_layer = nn.Embedding(
            config.fixed_sequence_length,
            config.init_gene_embed_dim,
        )
        self.fc_gene_embedding = nn.Linear(
            config.init_gene_embed_dim, config.token_embed_dim
        )

        # Convolutions
        self.stem_conv = nn.Sequential(
            nn.Conv1d(
                in_channels=config.token_embed_dim,
                out_channels=config.conv_init_embed_dim,
                kernel_size=config.stem_kernel_shape,
                padding="same",
            ),
            nn.GELU(approximate="tanh"),
        )

        self.conv_tower = nn.ModuleList(
            [
                ConvTowerBlock(
                    dim_in=config.filter_list[i],
                    dim_out=config.filter_list[i + 1],
                    kernel_size=5,
                    conv_layer_norm_shape=config.filter_list[i],
                    resconv_layer_norm_shape=config.filter_list[i + 1],
                )
                for i in range(len(config.filter_list) - 1)
            ]
        )

        # Transformer
        attention_maps_to_save = config.attention_maps_to_save
        self._attention_layers_to_save = list({t[0] for t in attention_maps_to_save})

        self._attention_maps_per_layer_to_save = {
            layer: [t[1] for t in attention_maps_to_save if t[0] == layer]
            for layer in self._attention_layers_to_save
        }

        max_layer = max(self._attention_layers_to_save + [0])
        if max_layer > config.num_layers:
            raise ValueError(
                f"You are requiring attention maps for layer {max_layer}, "
                f"while the model has {config.num_layers} layers only."
            )
        self._rotary_embedding_config = RotaryEmbeddingConfig(rescaling_factor=None)
        self.transformer_layers = nn.ModuleList(
            [
                SelfAttentionBlock(
                    num_heads=config.num_attention_heads,
                    embed_dim=config.embed_dim,
                    ffn_embed_dim=config.ffn_embed_dim,
                    key_size=config.key_size,
                    add_bias_kv=False,
                    add_bias_fnn=False,
                    ffn_activation_name="swish",
                    use_glu_in_ffn=True,
                    layer_norm_eps=1e-5,  # this is the default haiku value
                    pre_layer_norm=True,
                    name=f"attention_layer_{layer_idx}",
                    rotary_embedding_config=self._rotary_embedding_config,
                )
                for layer_idx in range(config.num_layers)
            ]
        )

        # Deconvolutions
        self.deconv_tower = nn.ModuleList(
            [
                DeConvTowerBlock(
                    dim_in=config.filter_list[-1 - i],
                    dim_out=config.filter_list[-1 - i - 1],
                    kernel_size=5,
                    stride=2,
                    conv_layer_norm_shape=config.filter_list[-1 - i],
                    resconv_layer_norm_shape=config.filter_list[-1 - i - 1],
                )
                for i in range(len(config.filter_list) - 1)
            ]
        )

        # Language Modeling heads
        self.omic_lm_heads = nn.ModuleDict(
            {
                omic: LMHead(
                    dim_in=config.conv_init_embed_dim,
                    embed_dim=config.embed_dim,
                    dim_out=config.alphabet_size[omic],
                    num_hidden_layers=config.num_hidden_layers_head,
                )
                for omic in self.config.alphabet_size
            }
        )

    def get_embeddings(
        self,
        input_ids: dict[str, torch.Tensor],
    ) -> dict[str, torch.Tensor]:
        omic_embeddings = {}
        for omic, omic_tokens in input_ids.items():
            omic_embeddings[omic] = self.embedding_layers[omic](omic_tokens)
        return omic_embeddings

    def forward(self, input_ids: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]:
        outs = {}
        embeddings = self.get_embeddings(input_ids)
        outs["omic_embeddings"] = embeddings
        x = torch.stack(list(embeddings.values()), dim=0).sum(dim=0)  # [B, T, C]
        outs["embeddings"] = x

        if self.config.use_gene_embedding:
            gene_indices = torch.arange(
                self.config.fixed_sequence_length, device=x.device
            )
            gene_embedding = self.gene_embedding_layer(gene_indices)
            if self.config.project_gene_embedding:
                gene_embedding = self.fc_gene_embedding(gene_embedding)
            x = x + gene_embedding
            outs["embeddings_with_gene_embedding"] = x

        x = x.permute(0, 2, 1)
        x = self.stem_conv(x)
        outs["stem"] = x

        residuals = []
        for conv_block in self.conv_tower:
            x, res = conv_block(x)
            residuals.append(res)
        x = x.permute(0, 2, 1)
        outs["conv_tower"] = x
        outs["conv_tower_residuals"] = residuals  # type: ignore
        residuals = residuals[::-1]

        for layer_idx, transformer in enumerate(self.transformer_layers):
            output = transformer(x)
            x = output["embeddings"]
            if (layer_idx + 1) in self.config.embeddings_layers_to_save:
                outs[f"embeddings_{(layer_idx + 1)}"] = output["embeddings"]
            if (layer_idx + 1) in self._attention_layers_to_save:
                for map_number in self._attention_maps_per_layer_to_save[layer_idx + 1]:
                    dkey = f"attention_map_layer_{layer_idx + 1}_number_{map_number}"
                    outs[dkey] = output["attention_weights"][:, map_number + 1]
        outs["after_transformer_embedding"] = x

        x = x.permute(0, 2, 1)
        for deconv_block, res in zip(self.deconv_tower, residuals):
            x = deconv_block(x, res)
        x = x.permute(0, 2, 1)
        outs["deconv_tower"] = x

        outs["logits"] = {
            omic: self.omic_lm_heads[omic](x) for omic in self.config.alphabet_size
        }

        return outs