File size: 9,006 Bytes
e308d04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import json
import os
from typing import List, Optional, Union

import numpy as np
import torch
from transformers import PreTrainedTokenizer


class BinnedOmicTokenizer(PreTrainedTokenizer):
    def __init__(
        self,
        n_expressions_bins: int = 64,
        min_omic_value: float = 0.0,
        max_omic_value: float = 1.0,
        use_max_normalization: bool = True,
        normalization_factor: float = 1.0,
        prepend_cls_token: bool = False,
        fixed_sequence_length: Optional[int] = None,
        unpadded_length: Optional[int] = None,
        **kwargs,
    ):
        bin_tokens = [str(i) for i in range(n_expressions_bins)]
        special_tokens = ["<pad>", "<mask>", "<cls>"]

        vocab = {tok: i for i, tok in enumerate(bin_tokens)}
        offset = len(vocab)
        for i, tok in enumerate(special_tokens):
            vocab[tok] = offset + i

        ids_to_tokens = {i: tok for tok, i in vocab.items()}

        self.vocab = vocab
        self.ids_to_tokens = ids_to_tokens

        self.n_expressions_bins = n_expressions_bins
        self.min_omic_value = min_omic_value
        self.max_omic_value = max_omic_value
        self.use_max_normalization = use_max_normalization
        self.normalization_factor = normalization_factor
        self.prepend_cls_token = prepend_cls_token
        self.fixed_sequence_length = fixed_sequence_length
        self.unpadded_length = unpadded_length

        self.bin_edges = np.linspace(min_omic_value, max_omic_value, n_expressions_bins)

        self.pad_token = "<pad>"
        self.mask_token = "<mask>"
        self.cls_token = "<cls>"

        super().__init__(**kwargs)

        self.add_special_tokens(
            {
                "pad_token": "<pad>",
                "mask_token": "<mask>",
                "cls_token": "<cls>",
                "unk_token": "<pad>",
            }
        )

    def _convert_token_to_id(self, token: str) -> int:
        return self.vocab.get(token, self.vocab[self.unk_token])

    def _convert_id_to_token(self, index: int) -> str:
        return self.ids_to_tokens.get(index, self.unk_token)

    def get_vocab(self) -> dict:
        return self.vocab

    def _tokenize(self, text, **kwargs):
        raise NotImplementedError("Use `encode` or `batch_encode_plus` methods.")

    def decode(self, token_ids, **kwargs):
        return [self._convert_id_to_token(i) for i in token_ids]

    def encode(
        self,
        gene_expr: Union[np.ndarray, List[float]],
        pad_to_fixed_length: bool = False,
        max_length: Optional[int] = None,
        return_tensors: Optional[str] = None,
        **kwargs,
    ) -> Union[List[int], torch.Tensor]:
        gene_expr = np.array(gene_expr)

        if self.use_max_normalization:
            gene_expr = gene_expr / self.normalization_factor

        token_ids = np.digitize(gene_expr, self.bin_edges).astype(int)
        token_ids[gene_expr == 0.0] = 0

        if self.prepend_cls_token:
            token_ids = np.concatenate([[self.cls_token_id], token_ids])

        if pad_to_fixed_length:
            current_max_length = self.fixed_sequence_length or max_length
            if current_max_length is None:
                raise ValueError("fixed_sequence_length or max_length must be set.")
            pad_len = current_max_length - len(token_ids)
            if pad_len > 0:
                token_ids = np.concatenate([token_ids, [self.pad_token_id] * pad_len])
            else:
                token_ids = token_ids[:current_max_length]

        if return_tensors == "pt":
            return torch.tensor(token_ids).unsqueeze(0)
        return token_ids.tolist()  # type: ignore

    def batch_encode_plus(
        self,
        batch_gene_expr: Union[np.ndarray, List[np.ndarray]],
        pad_to_fixed_length: bool = False,
        max_length: Optional[int] = None,
        return_tensors: Optional[str] = None,
        **kwargs,
    ):
        if isinstance(batch_gene_expr, list):
            batch_gene_expr = np.array(batch_gene_expr)

        encoded = [
            self.encode(
                gene_expr,
                pad_to_fixed_length=pad_to_fixed_length,
                max_length=max_length,
                return_tensors=None,
                **kwargs,
            )
            for gene_expr in batch_gene_expr
        ]

        encoded = np.array(encoded, dtype=np.int64)

        if return_tensors == "pt":
            return {"input_ids": torch.tensor(encoded)}
        return {"input_ids": encoded}

    @property
    def vocab_size(self) -> int:
        return len(self.vocab)

    def save_vocabulary(
        self, save_directory: str, filename_prefix: Optional[str] = None
    ):
        vocab_file = os.path.join(
            save_directory,
            (filename_prefix + "-" if filename_prefix else "") + "vocab.json",
        )
        with open(vocab_file, "w") as f:
            json.dump(self.vocab, f)
        return (vocab_file,)


class MOJOTokenizer(PreTrainedTokenizer):
    def __init__(
        self,
        n_expressions_bins: dict[str, int],
        min_omic_value: dict[str, float],
        max_omic_value: dict[str, float],
        use_max_normalization: dict[str, bool],
        normalization_factor: dict[str, float],
        prepend_cls_token: bool,
        fixed_sequence_length: int,
        unpadded_length: int,
        **kwargs,
    ):
        self.omics = n_expressions_bins.keys()
        self.omic_tokenizers = {
            omic: BinnedOmicTokenizer(
                n_expressions_bins=n_expressions_bins[omic],
                min_omic_value=min_omic_value[omic],
                max_omic_value=max_omic_value[omic],
                use_max_normalization=use_max_normalization[omic],
                normalization_factor=normalization_factor[omic],
                prepend_cls_token=prepend_cls_token,
                fixed_sequence_length=fixed_sequence_length,
                unpadded_length=unpadded_length,
                **kwargs,
            )
            for omic in n_expressions_bins.keys()
        }

        self.vocab = {omic: self.omic_tokenizers[omic].vocab for omic in self.omics}
        self.ids_to_tokens = {
            omic: self.omic_tokenizers[omic].ids_to_tokens for omic in self.omics
        }

        super().__init__(**kwargs)

    def _convert_token_to_id(self, token: dict[str, str]) -> dict[str, int]:
        return {
            omic: self.vocab[omic].get(token[omic], self.vocab[omic][self.unk_token])
            for omic in token
        }

    def _convert_id_to_token(self, index: dict[str, int]) -> dict[str, str]:
        return {
            omic: self.omic_tokenizers[omic]._convert_id_to_token(index[omic])
            for omic in index
        }

    def get_vocab(self) -> dict:
        return self.vocab

    def _tokenize(self, text, **kwargs):
        raise NotImplementedError("Use `encode` or `batch_encode_plus` methods.")

    def decode(self, token_ids: dict[str, list[int]], **kwargs):
        return {
            omic: self.omic_tokenizers[omic].decode(token_ids[omic])
            for omic in token_ids
        }

    def encode(
        self,
        omic_array: Union[dict[str, np.ndarray], dict[str, List[float]]],
        pad_to_fixed_length: bool = False,
        max_length: Optional[int] = None,
        return_tensors: Optional[str] = None,
        **kwargs,
    ) -> Union[dict[str, List[int]], dict[str, torch.Tensor]]:
        return {
            omic: self.omic_tokenizers[omic].encode(
                omic_array[omic],
                pad_to_fixed_length=pad_to_fixed_length,
                max_length=max_length,
                return_tensors=return_tensors,
            )
            for omic in omic_array
        }

    def batch_encode_plus(
        self,
        batch_omic_array: Union[dict[str, np.ndarray], dict[str, List[np.ndarray]]],
        pad_to_fixed_length: bool = False,
        max_length: Optional[int] = None,
        return_tensors: Optional[str] = None,
        **kwargs,
    ):
        return {
            omic: self.omic_tokenizers[omic].batch_encode_plus(
                batch_omic_array[omic],
                pad_to_fixed_length=pad_to_fixed_length,
                max_length=max_length,
                return_tensors=return_tensors,
            )
            for omic in batch_omic_array
        }

    @property
    def vocab_size(self) -> int:
        return sum(len(self.vocab[omic]) for omic in self.vocab)

    def save_vocabulary(
        self, save_directory: str, filename_prefix: Optional[str] = None
    ):
        vocab_files = []
        for omic in self.omics:
            vocab_file = os.path.join(
                save_directory,
                (filename_prefix + "-" if filename_prefix else "")
                + f"vocab_{omic}.json",
            )
            with open(vocab_file, "w") as f:
                json.dump(self.vocab[omic], f)
            vocab_files.append(vocab_file)
        return tuple(vocab_files)