add script
Browse filesSigned-off-by: Meng, Hengyu <[email protected]>
- evaluation.ipynb +159 -0
evaluation.ipynb
ADDED
|
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"attachments": {},
|
| 5 |
+
"cell_type": "markdown",
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"source": [
|
| 8 |
+
"## Introduction\n",
|
| 9 |
+
"\n",
|
| 10 |
+
"This tutorial demonstrates how to perform evaluation on a gpt-j-6B-int8 model."
|
| 11 |
+
]
|
| 12 |
+
},
|
| 13 |
+
{
|
| 14 |
+
"attachments": {},
|
| 15 |
+
"cell_type": "markdown",
|
| 16 |
+
"metadata": {},
|
| 17 |
+
"source": [
|
| 18 |
+
"## Prerequisite"
|
| 19 |
+
]
|
| 20 |
+
},
|
| 21 |
+
{
|
| 22 |
+
"cell_type": "code",
|
| 23 |
+
"execution_count": null,
|
| 24 |
+
"metadata": {
|
| 25 |
+
"vscode": {
|
| 26 |
+
"languageId": "plaintext"
|
| 27 |
+
}
|
| 28 |
+
},
|
| 29 |
+
"outputs": [],
|
| 30 |
+
"source": [
|
| 31 |
+
"!pip install onnx onnxruntime torch transformers datasets accelerate"
|
| 32 |
+
]
|
| 33 |
+
},
|
| 34 |
+
{
|
| 35 |
+
"attachments": {},
|
| 36 |
+
"cell_type": "markdown",
|
| 37 |
+
"metadata": {},
|
| 38 |
+
"source": [
|
| 39 |
+
"## Run\n",
|
| 40 |
+
"\n",
|
| 41 |
+
"### 1. Get lambada acc"
|
| 42 |
+
]
|
| 43 |
+
},
|
| 44 |
+
{
|
| 45 |
+
"cell_type": "code",
|
| 46 |
+
"execution_count": null,
|
| 47 |
+
"metadata": {
|
| 48 |
+
"vscode": {
|
| 49 |
+
"languageId": "plaintext"
|
| 50 |
+
}
|
| 51 |
+
},
|
| 52 |
+
"outputs": [],
|
| 53 |
+
"source": [
|
| 54 |
+
"from transformers import AutoTokenizer\n",
|
| 55 |
+
"import torch\n",
|
| 56 |
+
"from datasets import load_dataset\n",
|
| 57 |
+
"import onnxruntime as ort\n",
|
| 58 |
+
"from torch.nn.functional import pad\n",
|
| 59 |
+
"\n",
|
| 60 |
+
"# load model\n",
|
| 61 |
+
"model_id = \"EleutherAI/gpt-j-6B\"\n",
|
| 62 |
+
"tokenizer = AutoTokenizer.from_pretrained(model_id)\n",
|
| 63 |
+
"\n",
|
| 64 |
+
"def tokenize_function(examples):\n",
|
| 65 |
+
" example = tokenizer(examples['text'])\n",
|
| 66 |
+
" return example\n",
|
| 67 |
+
"\n",
|
| 68 |
+
"# create dataset\n",
|
| 69 |
+
"dataset = load_dataset('lambada', split='validation')\n",
|
| 70 |
+
"dataset = dataset.shuffle(seed=42)\n",
|
| 71 |
+
"dataset = dataset.map(tokenize_function, batched=True)\n",
|
| 72 |
+
"dataset.set_format(type='torch', columns=['input_ids'])\n",
|
| 73 |
+
"\n",
|
| 74 |
+
"# create session\n",
|
| 75 |
+
"options = ort.SessionOptions()\n",
|
| 76 |
+
"options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL\n",
|
| 77 |
+
"session = ort.InferenceSession('/path/to/model.onnx', options, providers=ort.get_available_providers())\n",
|
| 78 |
+
"total, hit = 0, 0\n",
|
| 79 |
+
"index = 1\n",
|
| 80 |
+
"\n",
|
| 81 |
+
"# inference\n",
|
| 82 |
+
"for idx, batch in enumerate(dataset):\n",
|
| 83 |
+
" input_ids = batch['input_ids'].unsqueeze(0)\n",
|
| 84 |
+
" label = input_ids[:, -1]\n",
|
| 85 |
+
" pad_len = 0 ##set to 0\n",
|
| 86 |
+
" input_ids = pad(input_ids, (0, pad_len), value=1)\n",
|
| 87 |
+
" ort_inputs = {\n",
|
| 88 |
+
" 'input_ids': input_ids.detach().cpu().numpy(),\n",
|
| 89 |
+
" 'attention_mask': torch.ones(input_ids.shape).detach().cpu().numpy().astype('int64')\n",
|
| 90 |
+
" }\n",
|
| 91 |
+
" predictions = session.run(None, ort_inputs)\n",
|
| 92 |
+
" outputs = torch.from_numpy(predictions[0]) \n",
|
| 93 |
+
" last_token_logits = outputs[:, -2 - pad_len, :]\n",
|
| 94 |
+
" pred = last_token_logits.argmax(dim=-1)\n",
|
| 95 |
+
" total += label.size(0)\n",
|
| 96 |
+
" hit += (pred == label).sum().item()\n",
|
| 97 |
+
"acc = hit / total\n",
|
| 98 |
+
"print('acc: ', acc)"
|
| 99 |
+
]
|
| 100 |
+
},
|
| 101 |
+
{
|
| 102 |
+
"attachments": {},
|
| 103 |
+
"cell_type": "markdown",
|
| 104 |
+
"metadata": {},
|
| 105 |
+
"source": [
|
| 106 |
+
"### 2. Text Generation"
|
| 107 |
+
]
|
| 108 |
+
},
|
| 109 |
+
{
|
| 110 |
+
"cell_type": "code",
|
| 111 |
+
"execution_count": null,
|
| 112 |
+
"metadata": {
|
| 113 |
+
"vscode": {
|
| 114 |
+
"languageId": "plaintext"
|
| 115 |
+
}
|
| 116 |
+
},
|
| 117 |
+
"outputs": [],
|
| 118 |
+
"source": [
|
| 119 |
+
"import os\n",
|
| 120 |
+
"import time\n",
|
| 121 |
+
"import sys\n",
|
| 122 |
+
"\n",
|
| 123 |
+
"# create session\n",
|
| 124 |
+
"sess_options = ort.SessionOptions()\n",
|
| 125 |
+
"sess_options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL\n",
|
| 126 |
+
"session = ort.InferenceSession('/path/to/model.onnx', sess_options)\n",
|
| 127 |
+
"\n",
|
| 128 |
+
"# input prompt\n",
|
| 129 |
+
"# 32 tokens input\n",
|
| 130 |
+
"prompt = \"Once upon a time, there existed a little girl, who liked to have adventures.\" + \\\n",
|
| 131 |
+
" \" She wanted to go to places and meet new people, and have fun.\"\n",
|
| 132 |
+
"\n",
|
| 133 |
+
"print(\"prompt: \", prompt)\n",
|
| 134 |
+
"\n",
|
| 135 |
+
"# start\n",
|
| 136 |
+
"input_ids = tokenizer(prompt, return_tensors=\"pt\").input_ids\n",
|
| 137 |
+
"for i in range(32):\n",
|
| 138 |
+
" inp = {'input_ids': input_ids.detach().cpu().numpy(),\n",
|
| 139 |
+
" 'attention_mask': torch.ones(input_ids.shape).detach().cpu().numpy().astype('int64')}\n",
|
| 140 |
+
" output = session.run(None, inp)\n",
|
| 141 |
+
" logits = output[0]\n",
|
| 142 |
+
" logits = torch.from_numpy(logits)\n",
|
| 143 |
+
" next_token_logits = logits[:, -1, :]\n",
|
| 144 |
+
" probs = torch.nn.functional.softmax(next_token_logits, dim=-1)\n",
|
| 145 |
+
" next_tokens = torch.argmax(probs, dim=-1)\n",
|
| 146 |
+
" input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)\n",
|
| 147 |
+
"print(tokenizer.decode(input_ids[0]))"
|
| 148 |
+
]
|
| 149 |
+
}
|
| 150 |
+
],
|
| 151 |
+
"metadata": {
|
| 152 |
+
"language_info": {
|
| 153 |
+
"name": "python"
|
| 154 |
+
},
|
| 155 |
+
"orig_nbformat": 4
|
| 156 |
+
},
|
| 157 |
+
"nbformat": 4,
|
| 158 |
+
"nbformat_minor": 2
|
| 159 |
+
}
|