weiweiz1 commited on
Commit
9c90a40
·
1 Parent(s): d23d283

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +33 -0
README.md CHANGED
@@ -1,3 +1,36 @@
1
  ---
 
 
 
 
 
2
  license: apache-2.0
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - pytorch
6
+ - causal-lm
7
  license: apache-2.0
8
  ---
9
+
10
+ # Sparse GPT-J 6B
11
+
12
+ ## Model Description
13
+ The sparse version of GPT-J 6B is a pruned variant derived from the original [GPT-J 6B](https://huggingface.co/EleutherAI/gpt-j-6b) model and the vast majority of linear layers maintain a 40% unstructured sparsity (except for the 'lm_head').
14
+
15
+
16
+ <figure>
17
+
18
+ | Hyperparameter | Value |
19
+ |----------------------|------------|
20
+ | \\(n_{parameters}\\) | 6053381344 |
21
+ | \\(n_{layers}\\) | 28&ast; |
22
+ | \\(d_{model}\\) | 4096 |
23
+ | \\(d_{ff}\\) | 16384 |
24
+ | \\(n_{heads}\\) | 16 |
25
+ | \\(d_{head}\\) | 256 |
26
+ | \\(n_{ctx}\\) | 2048 |
27
+ | \\(n_{vocab}\\) | 50257/50400&dagger; (same tokenizer as GPT-2/3) |
28
+ | Positional Encoding | [Rotary Position Embedding (RoPE)](https://arxiv.org/abs/2104.09864) |
29
+ | RoPE Dimensions | [64](https://github.com/kingoflolz/mesh-transformer-jax/blob/f2aa66e0925de6593dcbb70e72399b97b4130482/mesh_transformer/layers.py#L223) |
30
+ <figcaption><p><strong>&ast;</strong> Each layer consists of one feedforward block and one self attention block.</p>
31
+ <p><strong>&dagger;</strong> Although the embedding matrix has a size of 50400, only 50257 entries are used by the GPT-2 tokenizer.</p></figcaption></figure>
32
+
33
+ The model consists of 28 layers with a model dimension of 4096, and a feedforward dimension of 16384. The model
34
+ dimension is split into 16 heads, each with a dimension of 256. Rotary Position Embedding (RoPE) is applied to 64
35
+ dimensions of each head. The model is trained with a tokenization vocabulary of 50257, using the same set of BPEs as
36
+ GPT-2/GPT-3.