File size: 17,469 Bytes
ddf9b49 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 |
# -*- coding: utf-8 -*-
"""crop_desease_detection.ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1PCO8YxMl3tqzsbMVP1iiSylwED-u_VfW
"""
# Complete Pipeline for Tree Disease Detection with PDT Dataset
# Cell 1: Install required packages
!pip install ultralytics torch torchvision opencv-python matplotlib
!pip install huggingface_hub
import os
import shutil
import zipfile
from ultralytics import YOLO
import torch
import cv2
import matplotlib.pyplot as plt
import numpy as np
from huggingface_hub import snapshot_download
from IPython.display import Image, display
# Cell 2: Download the PDT dataset from HuggingFace
print("Downloading PDT dataset from HuggingFace...")
try:
dataset_path = snapshot_download(
repo_id='qwer0213/PDT_dataset',
repo_type='dataset',
local_dir='/content/PDT_dataset',
resume_download=True
)
print(f"Dataset downloaded to: {dataset_path}")
except Exception as e:
print(f"Error downloading dataset: {e}")
# Cell 3: Find and extract the zip file
print("\nLooking for zip file in downloaded dataset...")
# Find the zip file
zip_file_path = None
for root, dirs, files in os.walk('/content/PDT_dataset'):
for file in files:
if file.endswith('.zip'):
zip_file_path = os.path.join(root, file)
print(f"Found zip file: {zip_file_path}")
break
if zip_file_path:
break
if not zip_file_path:
print("No zip file found in the downloaded dataset!")
else:
# Extract the zip file
extract_path = '/content/PDT_dataset_extracted'
os.makedirs(extract_path, exist_ok=True)
print(f"Extracting {zip_file_path} to {extract_path}")
with zipfile.ZipFile(zip_file_path, 'r') as zip_ref:
zip_ref.extractall(extract_path)
print("Extraction completed!")
# Cell 4: Explore the extracted dataset structure
print("\nExploring dataset structure...")
def explore_dataset_structure(base_path):
"""Explore and find the actual dataset structure"""
dataset_info = {
'yolo_txt_path': None,
'voc_xml_path': None,
'train_path': None,
'val_path': None,
'test_path': None
}
for root, dirs, files in os.walk(base_path):
# Look for YOLO_txt directory
if 'YOLO_txt' in root:
dataset_info['yolo_txt_path'] = root
print(f"Found YOLO_txt at: {root}")
# Check for train/val/test
for split in ['train', 'val', 'test']:
split_path = os.path.join(root, split)
if os.path.exists(split_path):
dataset_info[f'{split}_path'] = split_path
print(f"Found {split} at: {split_path}")
# Look for VOC_xml directory
if 'VOC_xml' in root:
dataset_info['voc_xml_path'] = root
print(f"Found VOC_xml at: {root}")
return dataset_info
dataset_info = explore_dataset_structure('/content/PDT_dataset_extracted')
# Cell 5: Setup YOLO dataset from the PDT dataset
def setup_yolo_dataset(dataset_info, output_dir='/content/PDT_yolo'):
"""Setup YOLO dataset from the extracted PDT dataset"""
print(f"\nSetting up YOLO dataset to {output_dir}")
# Clean output directory
if os.path.exists(output_dir):
shutil.rmtree(output_dir)
os.makedirs(output_dir, exist_ok=True)
# Create directory structure
for split in ['train', 'val', 'test']:
os.makedirs(os.path.join(output_dir, 'images', split), exist_ok=True)
os.makedirs(os.path.join(output_dir, 'labels', split), exist_ok=True)
total_copied = 0
# Process each split
for split in ['train', 'val', 'test']:
split_path = dataset_info[f'{split}_path']
if not split_path or not os.path.exists(split_path):
print(f"Warning: {split} split not found")
continue
print(f"\nProcessing {split} from: {split_path}")
# Find images and labels directories
img_dir = os.path.join(split_path, 'images')
lbl_dir = os.path.join(split_path, 'labels')
if not os.path.exists(img_dir) or not os.path.exists(lbl_dir):
print(f"Warning: Could not find images or labels for {split}")
continue
# Copy images and labels
img_files = [f for f in os.listdir(img_dir) if f.endswith(('.jpg', '.jpeg', '.png'))]
print(f"Found {len(img_files)} images in {split}")
for img_file in img_files:
# Copy image
src_img = os.path.join(img_dir, img_file)
dst_img = os.path.join(output_dir, 'images', split, img_file)
shutil.copy2(src_img, dst_img)
# Copy corresponding label
base_name = os.path.splitext(img_file)[0]
txt_file = base_name + '.txt'
src_txt = os.path.join(lbl_dir, txt_file)
dst_txt = os.path.join(output_dir, 'labels', split, txt_file)
if os.path.exists(src_txt):
shutil.copy2(src_txt, dst_txt)
total_copied += 1
# Create data.yaml
data_yaml_content = f"""# PDT dataset configuration
path: {os.path.abspath(output_dir)}
train: images/train
val: images/val
test: images/test
# Classes
names:
0: unhealthy
nc: 1
"""
yaml_path = os.path.join(output_dir, 'data.yaml')
with open(yaml_path, 'w') as f:
f.write(data_yaml_content)
print(f"\nDataset setup completed!")
print(f"Total images copied: {total_copied}")
# Verify the dataset
for split in ['train', 'val', 'test']:
img_dir = os.path.join(output_dir, 'images', split)
lbl_dir = os.path.join(output_dir, 'labels', split)
if os.path.exists(img_dir):
img_count = len([f for f in os.listdir(img_dir) if f.endswith(('.jpg', '.jpeg', '.png'))])
lbl_count = len([f for f in os.listdir(lbl_dir) if f.endswith('.txt')])
print(f"{split}: {img_count} images, {lbl_count} labels")
return yaml_path
# Setup the dataset
data_yaml_path = setup_yolo_dataset(dataset_info)
# Cell 6: Train the model
print("\nStarting model training...")
# Use YOLOv8s model
model = YOLO('yolov8s.yaml')
# Train the model
results = model.train(
data=data_yaml_path,
epochs=50, # Adjust based on your needs
imgsz=640,
batch=16, # Adjust based on GPU memory
name='yolov8s_pdt',
patience=10,
save=True,
device='0' if torch.cuda.is_available() else 'cpu',
workers=4,
project='runs/train',
exist_ok=True,
pretrained=False,
optimizer='SGD',
lr0=0.01,
momentum=0.9,
weight_decay=0.001,
verbose=True,
plots=True,
)
print("Training completed!")
# Cell 7: Evaluate the model
print("\nEvaluating model performance...")
# Load the best model
best_model_path = 'runs/train/yolov8s_pdt/weights/best.pt'
model = YOLO(best_model_path)
# Validate
metrics = model.val()
print(f"\nValidation Metrics:")
print(f"mAP50: {metrics.box.map50:.3f}")
print(f"mAP50-95: {metrics.box.map:.3f}")
print(f"Precision: {metrics.box.p.mean():.3f}")
print(f"Recall: {metrics.box.r.mean():.3f}")
# Cell 8: Test the model
print("\nTesting on sample images...")
# Test on validation images
val_img_dir = '/content/PDT_yolo/images/val'
val_images = [f for f in os.listdir(val_img_dir) if f.endswith(('.jpg', '.jpeg', '.png'))][:5]
fig, axes = plt.subplots(2, 3, figsize=(18, 12))
axes = axes.ravel()
for i, img_name in enumerate(val_images[:6]):
img_path = os.path.join(val_img_dir, img_name)
# Run inference
results = model(img_path, conf=0.25)
# Plot results
img_with_boxes = results[0].plot()
axes[i].imshow(cv2.cvtColor(img_with_boxes, cv2.COLOR_BGR2RGB))
axes[i].set_title(f'{img_name}')
axes[i].axis('off')
# Hide empty subplot
if len(val_images) < 6:
axes[5].axis('off')
plt.tight_layout()
plt.show()
# Cell 9: Create inference function
def detect_tree_disease(image_path, conf_threshold=0.25):
"""Detect unhealthy trees in an image"""
results = model(image_path, conf=conf_threshold)
detections = []
for result in results:
boxes = result.boxes
if boxes is not None:
for box in boxes:
detection = {
'confidence': float(box.conf[0]),
'bbox': box.xyxy[0].tolist(),
'class': 'unhealthy'
}
detections.append(detection)
# Visualize
img_with_boxes = results[0].plot()
plt.figure(figsize=(12, 8))
plt.imshow(cv2.cvtColor(img_with_boxes, cv2.COLOR_BGR2RGB))
plt.axis('off')
plt.title(f'Detected {len(detections)} unhealthy tree(s)')
plt.show()
return detections
# Cell 10: Save the model
print("\nSaving model...")
final_model_path = 'tree_disease_detector.pt'
model.save(final_model_path)
print(f"Model saved to: {final_model_path}")
# Cell 11: Save to Google Drive (optional)
from google.colab import drive
try:
drive.mount('/content/drive')
save_dir = '/content/drive/MyDrive/tree_disease_detection'
os.makedirs(save_dir, exist_ok=True)
# Copy files
shutil.copy(best_model_path, os.path.join(save_dir, 'best_model.pt'))
shutil.copy(final_model_path, os.path.join(save_dir, 'tree_disease_detector.pt'))
# Copy training results
results_png = 'runs/train/yolov8s_pdt/results.png'
if os.path.exists(results_png):
shutil.copy(results_png, os.path.join(save_dir, 'training_results.png'))
print(f"Results saved to Google Drive: {save_dir}")
except:
print("Google Drive not mounted. Results saved locally.")
# Cell 12: Summary
print("\n=== Training Complete ===")
print("Model: YOLOv8s")
print("Dataset: PDT (Pests and Diseases Tree)")
print(f"Best Model: {best_model_path}")
print("The model is ready for tree disease detection!")
# Test with your own image
print("\nTo test with your own image:")
print("detections = detect_tree_disease('path/to/your/image.jpg')")
# Cell 1: Install Hugging Face Hub
!pip install huggingface_hub
# Cell 2: Login to Hugging Face
from huggingface_hub import login, HfApi, create_repo
import os
import shutil
# Login to Hugging Face (you'll need your token)
# Get your token from: https://huggingface.co/settings/tokens
login()
# Cell 3: Prepare model files for upload
# Create a directory for model files
model_dir = "pdt_tree_disease_model"
os.makedirs(model_dir, exist_ok=True)
# Copy the trained model
best_model_path = 'runs/train/yolov8s_pdt/weights/best.pt'
if os.path.exists(best_model_path):
shutil.copy(best_model_path, os.path.join(model_dir, "best.pt"))
# Copy the final saved model
if os.path.exists('tree_disease_detector.pt'):
shutil.copy('tree_disease_detector.pt', os.path.join(model_dir, "tree_disease_detector.pt"))
# Copy training results
results_path = 'runs/train/yolov8s_pdt/results.png'
if os.path.exists(results_path):
shutil.copy(results_path, os.path.join(model_dir, "training_results.png"))
# Copy confusion matrix if exists
confusion_matrix_path = 'runs/train/yolov8s_pdt/confusion_matrix.png'
if os.path.exists(confusion_matrix_path):
shutil.copy(confusion_matrix_path, os.path.join(model_dir, "confusion_matrix.png"))
# Copy other training plots
for plot_file in ['F1_curve.png', 'P_curve.png', 'R_curve.png', 'PR_curve.png']:
plot_path = f'runs/train/yolov8s_pdt/{plot_file}'
if os.path.exists(plot_path):
shutil.copy(plot_path, os.path.join(model_dir, plot_file))
# Cell 4: Create model card (README.md)
model_card = """---
tags:
- object-detection
- yolov8
- tree-disease-detection
- pdt-dataset
library_name: ultralytics
datasets:
- qwer0213/PDT_dataset
metrics:
- mAP50
- mAP50-95
---
# YOLOv8 Tree Disease Detection Model
This model is trained on the PDT (Pests and Diseases Tree) dataset for detecting unhealthy trees using YOLOv8.
## Model Description
- **Architecture**: YOLOv8s
- **Task**: Object Detection (Tree Disease Detection)
- **Classes**: 1 (unhealthy)
- **Input Size**: 640x640
- **Framework**: Ultralytics YOLOv8
## Training Details
- **Dataset**: PDT (Pests and Diseases Tree) dataset
- **Training Images**: 4,536
- **Validation Images**: 567
- **Test Images**: 567
- **Epochs**: 50
- **Batch Size**: 16
- **Optimizer**: SGD
- **Learning Rate**: 0.01
## Performance Metrics
| Metric | Value |
|--------|-------|
| mAP50 | 0.xxx |
| mAP50-95 | 0.xxx |
| Precision | 0.xxx |
| Recall | 0.xxx |
## Usage
```python
from ultralytics import YOLO
# Load model
model = YOLO('tree_disease_detector.pt')
# Run inference
results = model('path/to/image.jpg')
# Process results
for result in results:
boxes = result.boxes
if boxes is not None:
for box in boxes:
confidence = box.conf[0]
bbox = box.xyxy[0].tolist()
print(f"Unhealthy tree detected with confidence: {confidence}")
Dataset
This model was trained on the PDT dataset, which contains high-resolution UAV images of trees with pest and disease annotations.
Citation
bibtex@dataset{pdt_dataset,
title={PDT: UAV Pests and Diseases Tree Dataset},
author={Zhou et al.},
year={2024},
publisher={HuggingFace}
}
License
MIT License
"""
Fill in the actual metrics
if 'metrics' in globals() and metrics is not None:
model_card = model_card.replace('0.xxx', f'{metrics.box.map50:.3f}')
model_card = model_card.replace('0.xxx', f'{metrics.box.map:.3f}')
model_card = model_card.replace('0.xxx', f'{metrics.box.p.mean():.3f}')
model_card = model_card.replace('0.xxx', f'{metrics.box.r.mean():.3f}')
Save model card
with open(os.path.join(model_dir, "README.md"), "w") as f:
f.write(model_card)
Cell 5: Create config file
config_content = """# YOLOv8 Tree Disease Detection Configuration
model_type: yolov8s
task: detect
nc: 1 # number of classes
names: ['unhealthy'] # class names
Input
imgsz: 640
Inference settings
conf: 0.25 # confidence threshold
iou: 0.45 # IoU threshold for NMS
"""
with open(os.path.join(model_dir, "config.yaml"), "w") as f:
f.write(config_content)
Cell 6: Push to Hugging Face Hub
from huggingface_hub import HfApi
Initialize API
api = HfApi()
Create repository (replace 'your-username' with your HuggingFace username)
repo_id = "your-username/yolov8-tree-disease-detection" # Change this!
Create the repository
try:
create_repo(
repo_id=repo_id,
repo_type="model",
exist_ok=True
)
print(f"Repository created: https://huggingface.co/{repo_id}")
except Exception as e:
print(f"Repository might already exist or error: {e}")
Upload all files in the model directory
api.upload_folder(
folder_path=model_dir,
repo_id=repo_id,
repo_type="model",
)
print(f"Model uploaded successfully to: https://huggingface.co/{repo_id}")
Cell 7: Create a simple inference script for users
inference_script = """# Tree Disease Detection Inference
from ultralytics import YOLO
import cv2
import matplotlib.pyplot as plt
Download and load model from Hugging Face
model = YOLO('https://huggingface.co/{}/resolve/main/tree_disease_detector.pt')
def detect_tree_disease(image_path):
# Run inference
results = model(image_path, conf=0.25)
# Process results
detections = []
for result in results:
boxes = result.boxes
if boxes is not None:
for box in boxes:
detection = {
'confidence': float(box.conf[0]),
'bbox': box.xyxy[0].tolist(),
'class': 'unhealthy'
}
detections.append(detection)
# Visualize
annotated_img = results[0].plot()
plt.figure(figsize=(12, 8))
plt.imshow(cv2.cvtColor(annotated_img, cv2.COLOR_BGR2RGB))
plt.axis('off')
plt.title(f'Detected {len(detections)} unhealthy tree(s)')
plt.show()
return detections
Example usage
if name == "main":
detections = detect_tree_disease('path/to/your/image.jpg')
print(f"Found {len(detections)} unhealthy trees")
""".format(repo_id)
with open(os.path.join(model_dir, "inference.py"), "w") as f:
f.write(inference_script)
Upload the inference script
api.upload_file(
path_or_fileobj=os.path.join(model_dir, "inference.py"),
path_in_repo="inference.py",
repo_id=repo_id,
repo_type="model",
)
Cell 8: Create requirements.txt
requirements = """ultralytics>=8.0.0
torch>=2.0.0
opencv-python>=4.8.0
matplotlib>=3.7.0
pillow>=10.0.0
"""
with open(os.path.join(model_dir, "requirements.txt"), "w") as f:
f.write(requirements)
Upload requirements
api.upload_file(
path_or_fileobj=os.path.join(model_dir, "requirements.txt"),
path_in_repo="requirements.txt",
repo_id=repo_id,
repo_type="model",
)
print("\nModel successfully uploaded to Hugging Face!")
print(f"View your model at: https://huggingface.co/{repo_id}")
print("\nTo use your model:")
print(f"model = YOLO('https://huggingface.co/{repo_id}/resolve/main/tree_disease_detector.pt')")
## Steps to upload your model:
1. **Get a Hugging Face token**:
- Go to https://huggingface.co/settings/tokens
- Create a new token with write permissions
- Copy the token
2. **Replace placeholder values**:
- Change `your-username` to your actual Hugging Face username
- Update the metrics in the model card with actual values
3. **Run the cells** in order
## After uploading, others can use your model like this:
```python
from ultralytics import YOLO
# Load model directly from Hugging Face
model = YOLO('https://huggingface.co/your-username/yolov8-tree-disease-detection/resolve/main/tree_disease_detector.pt')
# Run inference
results = model('image.jpg') |