Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +107 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1231.21 +/- 85.02
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cb62c42eaeb0b7dd18361449266e6835cf6f70e621a6fe39ba261d0cad3461cf
|
3 |
+
size 128976
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fe687bd7af0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe687bd7b80>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe687bd7c10>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe687bd7ca0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fe687bd7d30>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fe687bd7dc0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe687bd7e50>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe687bd7ee0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fe687bd7f70>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe687bdb040>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe687bdb0d0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe687bdb160>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fe687bd99c0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"num_timesteps": 2000000,
|
36 |
+
"_total_timesteps": 2000000,
|
37 |
+
"_num_timesteps_at_start": 0,
|
38 |
+
"seed": null,
|
39 |
+
"action_noise": null,
|
40 |
+
"start_time": 1682297607745779998,
|
41 |
+
"learning_rate": 0.00096,
|
42 |
+
"tensorboard_log": null,
|
43 |
+
"lr_schedule": {
|
44 |
+
":type:": "<class 'function'>",
|
45 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
46 |
+
},
|
47 |
+
"_last_obs": {
|
48 |
+
":type:": "<class 'numpy.ndarray'>",
|
49 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAFsFlj5rtmW/qcMYv9ktjz86HsU+d24gv8zyDb+Uhyc+ebxcv6PZQcARvx6/Mr3NP6AAwD+nf9+94Tn5vQRjvT/bTi++zp0XPHAIHD/zsLY+G0+jP77Cmj7255Q/niPiPht80b+4oaA+9mDfvzSwhD/Q22m+MEY7Pp0tNj8wQu4/OB86v/ZMiD8TEHo/0/9ev8JH078NHMA8Wp9tP0H52z9WD1i/yXoeQPjpB7+9aQpA/1OtP36grb6KTUM/wjSFvuHLxz5RVqg/NCTtPqZVAEAbfNG/uKGgPkuxEj80sIQ/WAZLvq6Mtb4zoos+YaSIPwlhpL5THlw/NfLzPV24Tz6Jv2s/5gynPkMPo77zUoW+SuCKv82ycb+12xm+ajC+P9apzT5sa46/QKmaPMASar7eOcS/vgcsPB3Pj7/jxgQ+/2scP7ihoD5LsRI/aPR2v8N94z59iZ+9zYwIP6+niz/6nyq/Fcwkv+70RL+bmDG/oQ/+Piyw2r5wuH6+BgMRv3O11b+z2e09otTkPuCWILy9dlK/qx6wPvISeD6pEB9Axo3Evx3PUj0V0Qe+1KlUP/9rHD+4oaA+9mDfv2j0dr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
50 |
+
},
|
51 |
+
"_last_episode_starts": {
|
52 |
+
":type:": "<class 'numpy.ndarray'>",
|
53 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
54 |
+
},
|
55 |
+
"_last_original_obs": {
|
56 |
+
":type:": "<class 'numpy.ndarray'>",
|
57 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACmV7o1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA6PKsPQAAAABzJfm/AAAAAJJYJL0AAAAAfa37PwAAAACAMkA9AAAAAJfT/j8AAAAAC9cRvgAAAABfZvW/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJZ/7NgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgOfnzr0AAAAAwGv+vwAAAAA5bAG8AAAAAEIq/j8AAAAAQ4TUPQAAAADI3QBAAAAAACZwB74AAAAAw33hvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABUmxzQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBYr/C9AAAAAAuZ9b8AAAAA3Rk+PQAAAAD0BfI/AAAAAEZOorwAAAAAMaH1PwAAAABDUQI+AAAAAN8L4L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD9ns22AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAgUn2PQAAAACREPq/AAAAAP1gdj0AAAAAs8HcPwAAAAAw0bu9AAAAAA/c6z8AAAAAhtrmPQAAAADYjum/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
58 |
+
},
|
59 |
+
"_episode_num": 0,
|
60 |
+
"use_sde": true,
|
61 |
+
"sde_sample_freq": -1,
|
62 |
+
"_current_progress_remaining": 0.0,
|
63 |
+
"_stats_window_size": 100,
|
64 |
+
"ep_info_buffer": {
|
65 |
+
":type:": "<class 'collections.deque'>",
|
66 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJMWFLOAy2yMAWyUTegDjAF0lEdAsOmpjQRf4XV9lChoBkdAjait/nW8RWgHTegDaAhHQLDqF4TsY2t1fZQoaAZHQI8kU2vStvJoB03oA2gIR0Cw607E5yU+dX2UKGgGR0CSQTv5xiobaAdN6ANoCEdAsOy7T9bX6XV9lChoBkdAliDxcZ9/jWgHTegDaAhHQLDx07DEWIp1fZQoaAZHQJLEJGe+VTtoB03oA2gIR0Cw8ni2UjcEdX2UKGgGR0CVugoIfKZEaAdN6ANoCEdAsPQ8Ma0hNnV9lChoBkdAh9d+jdpItmgHTegDaAhHQLD2dyf+S8t1fZQoaAZHQJJCrykKu0VoB03oA2gIR0Cw+4ahpQDWdX2UKGgGR0CSWs9eQdS3aAdN6ANoCEdAsPv0/yGzr3V9lChoBkdAlvbukUKzA2gHTegDaAhHQLD9KCcf/3p1fZQoaAZHQJAbzaVUuL9oB03oA2gIR0Cw/o7TYukDdX2UKGgGR0CWH98Hv+fiaAdN6ANoCEdAsQQGRA8jiXV9lChoBkdAme2t9Dx9X2gHTegDaAhHQLEEq6QeV9p1fZQoaAZHQJMnk9FF2FFoB03oA2gIR0CxBoslC1JEdX2UKGgGR0CWJdm7J4jbaAdN6ANoCEdAsQih8c+7lXV9lChoBkdAmHhn0f5k9WgHTegDaAhHQLENWwljVhF1fZQoaAZHQJUgE593KSxoB03oA2gIR0CxDcrB9Cu2dX2UKGgGR0CVesJZ4fOlaAdN6ANoCEdAsQ79zOoo/nV9lChoBkdAmfQYdMj/uWgHTegDaAhHQLEQbbHp8nh1fZQoaAZHQJma3t2LYPJoB03oA2gIR0CxFllVcUuddX2UKGgGR0CS7EUYKpkxaAdN6ANoCEdAsRcKLpA2RHV9lChoBkdAlr8eBczIm2gHTegDaAhHQLEY7QgcLjR1fZQoaAZHQJhN/VtoBaNoB03oA2gIR0CxGoBnOB1+dX2UKGgGR0CTU50WuX/paAdN6ANoCEdAsR9FpCa7VnV9lChoBkdAl9krNnoPkWgHTegDaAhHQLEft66asp51fZQoaAZHQJfdufseGPBoB03oA2gIR0CxIO3pjc2zdX2UKGgGR0CYfoorFwT/aAdN6ANoCEdAsSJTechC+nV9lChoBkdAmZq3PmganGgHTegDaAhHQLEorfgJkXl1fZQoaAZHQJhdgn4O+ZhoB03oA2gIR0CxKWOQZGaydX2UKGgGR0CZqrzr/sE8aAdN6ANoCEdAsSr3/zasZHV9lChoBkdAlONf1tfoimgHTegDaAhHQLEsYSyt3fR1fZQoaAZHQJKueALApKBoB03oA2gIR0CxMRgW3z+WdX2UKGgGR0Ca//cDKYAsaAdN6ANoCEdAsTGHVMEidXV9lChoBkdAl7g3Ux20RmgHTegDaAhHQLEyuKRuCPJ1fZQoaAZHQJYocqvvBrNoB03oA2gIR0CxNCBHww0wdX2UKGgGR0CY3TakRBeHaAdN6ANoCEdAsTryPq9oOHV9lChoBkdAmC59QTEiuGgHTegDaAhHQLE7l4rjHXF1fZQoaAZHQJbFicMEzO5oB03oA2gIR0CxPM6DPGADdX2UKGgGR0CXVu5mAbyZaAdN6ANoCEdAsT44mmce83V9lChoBkdAmZwZwXIlt2gHTegDaAhHQLFC3p7TlT51fZQoaAZHQJd3Oi9IwudoB03oA2gIR0CxQ06yWzF/dX2UKGgGR0CYfCpvP1L8aAdN6ANoCEdAsUSGr2g3+HV9lChoBkdAmZ5bQPZqVWgHTegDaAhHQLFGIn4wh4d1fZQoaAZHQJUOVTHbRF9oB03oA2gIR0CxTSOxGDtgdX2UKGgGR0CSq7E7GNrCaAdN6ANoCEdAsU2VAiV0LnV9lChoBkdAl1vyiZfD12gHTegDaAhHQLFOzBrvb491fZQoaAZHQJSTRmjCYTloB03oA2gIR0CxUDk2UB4mdX2UKGgGR0CRn6I/Z/TcaAdN6ANoCEdAsVTwjMV1wHV9lChoBkdAkB0MNH6MzmgHTegDaAhHQLFVbaAWi111fZQoaAZHQJQ1q1IAfdRoB03oA2gIR0CxVrBaLXMAdX2UKGgGR0CUfCo7muDBaAdN6ANoCEdAsVixs3yZr3V9lChoBkdAk7p1PacqfGgHTegDaAhHQLFfERpDeCV1fZQoaAZHQJII5vNu+AVoB03oA2gIR0CxX4L17IDHdX2UKGgGR0CYu3yimEXdaAdN6ANoCEdAsWC38AJb+3V9lChoBkdAlKqbcCYCyWgHTegDaAhHQLFiJUbDMvB1fZQoaAZHQJWidRNyo4xoB03oA2gIR0CxZtfn0TURdX2UKGgGR0CSkzhybQTmaAdN6ANoCEdAsWdIcBEKE3V9lChoBkdAlzUW/etSymgHTegDaAhHQLFo2toSL611fZQoaAZHQJOr2C5EtuloB03oA2gIR0CxauT1K5CodX2UKGgGR0CT2ys7dSEUaAdN6ANoCEdAsXDg/OdGzHV9lChoBkdAirKOQQtjC2gHTegDaAhHQLFxU6RQrMF1fZQoaAZHQJTUBzHS4ONoB03oA2gIR0CxcoEit7rtdX2UKGgGR0CRQiriVB2PaAdN6ANoCEdAsXPouzyBkXV9lChoBkdAlcwqgh8pkWgHTegDaAhHQLF4qCAMDwJ1fZQoaAZHQJO6tjNIK+loB03oA2gIR0CxeUt1dPcjdX2UKGgGR0CTvuMpPRAsaAdN6ANoCEdAsXsI/7iyZHV9lChoBkdAkamPwd8zAWgHTegDaAhHQLF9Gvuw5eZ1fZQoaAZHQJcoiwIMSbpoB03oA2gIR0CxgpXg1m8NdX2UKGgGR0CWP3irT6SDaAdN6ANoCEdAsYMDkn1FpnV9lChoBkdAlCSE078vVWgHTegDaAhHQLGEOl4TsY51fZQoaAZHQJXsdFuvUz9oB03oA2gIR0CxhaOp84PxdX2UKGgGR0CUnH7Xg9/0aAdN6ANoCEdAsYqmk1uR93V9lChoBkdAlJeXGsFMZmgHTegDaAhHQLGLRlAeJYV1fZQoaAZHQJLtu9f1HvtoB03oA2gIR0CxjPYeo1k2dX2UKGgGR0CUukEd/8VIaAdN6ANoCEdAsY8YzO5avHV9lChoBkdAkpNVRceKbmgHTegDaAhHQLGUMR3NcGF1fZQoaAZHQJWWt4Uvf0poB03oA2gIR0CxlKSeZof0dX2UKGgGR0CSVYYe1a4daAdN6ANoCEdAsZXZ44ZMtnV9lChoBkdAlNnub7TDwmgHTegDaAhHQLGXRyT6i0x1fZQoaAZHQJBYPP8hs69oB03oA2gIR0CxnKBLoOhCdX2UKGgGR0CXHDjmSyMUaAdN6ANoCEdAsZ0/+NtIkXV9lChoBkdAlDmAu7HyVmgHTegDaAhHQLGfEYwqRU51fZQoaAZHQJcNNmpVCHBoB03oA2gIR0CxoUGs/6frdX2UKGgGR0CWVOuFHrhSaAdN6ANoCEdAsaYNhJAdGXV9lChoBkdAljdyuZCv5mgHTegDaAhHQLGmfNxEORV1fZQoaAZHQJVRoGlhw2loB03oA2gIR0Cxp7myLQ5WdX2UKGgGR0CV1YuqWC2+aAdN6ANoCEdAsakjZOBUaXV9lChoBkdAlnwpeNT99GgHTegDaAhHQLGuu1jiGWV1fZQoaAZHQJXHQ94eLehoB03oA2gIR0Cxr2TwlSjydX2UKGgGR0CVuc2ZiNKiaAdN6ANoCEdAsbFHF6zE8HV9lChoBkdAlMtrT+ee4GgHTegDaAhHQLGzJGSpzcR1fZQoaAZHQJaTIz0pVjtoB03oA2gIR0Cxt+KN6w+udX2UKGgGR0CNU9u9eyAyaAdN6ANoCEdAsbhbs8gZCXV9lChoBkdAlJbEDEFW4mgHTegDaAhHQLG5ikRSP2h1fZQoaAZHQJiTD8uSOipoB03oA2gIR0CxuvHo5ggHdX2UKGgGR0CVUCFK02LpaAdN6ANoCEdAscD93W4EwHV9lChoBkdAlcd3LV4HHGgHTegDaAhHQLHBq7Lt/nZ1fZQoaAZHQJKTEcKgIyFoB03oA2gIR0Cxw4BxHXmOdX2UKGgGR0CVwKjurp7kaAdN6ANoCEdAscThKoQ4CXVlLg=="
|
67 |
+
},
|
68 |
+
"ep_success_buffer": {
|
69 |
+
":type:": "<class 'collections.deque'>",
|
70 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
71 |
+
},
|
72 |
+
"_n_updates": 62500,
|
73 |
+
"n_steps": 8,
|
74 |
+
"gamma": 0.99,
|
75 |
+
"gae_lambda": 0.9,
|
76 |
+
"ent_coef": 0.0,
|
77 |
+
"vf_coef": 0.4,
|
78 |
+
"max_grad_norm": 0.5,
|
79 |
+
"normalize_advantage": false,
|
80 |
+
"observation_space": {
|
81 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
82 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
83 |
+
"dtype": "float32",
|
84 |
+
"_shape": [
|
85 |
+
28
|
86 |
+
],
|
87 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
88 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
89 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
90 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
91 |
+
"_np_random": null
|
92 |
+
},
|
93 |
+
"action_space": {
|
94 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
95 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
96 |
+
"dtype": "float32",
|
97 |
+
"_shape": [
|
98 |
+
8
|
99 |
+
],
|
100 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
101 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
102 |
+
"bounded_below": "[ True True True True True True True True]",
|
103 |
+
"bounded_above": "[ True True True True True True True True]",
|
104 |
+
"_np_random": null
|
105 |
+
},
|
106 |
+
"n_envs": 4
|
107 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6a27a4818c96ac8b5ff58b7f30c02a33bd1183b1d4ef5e09188d9e71f88a832e
|
3 |
+
size 56062
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c8b2c0f1ddcfbc964bd55a89194ecee49b5ae277995120d3699ea4e281f1d7b4
|
3 |
+
size 56766
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe687bd7af0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe687bd7b80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe687bd7c10>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe687bd7ca0>", "_build": "<function ActorCriticPolicy._build at 0x7fe687bd7d30>", "forward": "<function ActorCriticPolicy.forward at 0x7fe687bd7dc0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe687bd7e50>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe687bd7ee0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe687bd7f70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe687bdb040>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe687bdb0d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe687bdb160>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fe687bd99c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682297607745779998, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAFsFlj5rtmW/qcMYv9ktjz86HsU+d24gv8zyDb+Uhyc+ebxcv6PZQcARvx6/Mr3NP6AAwD+nf9+94Tn5vQRjvT/bTi++zp0XPHAIHD/zsLY+G0+jP77Cmj7255Q/niPiPht80b+4oaA+9mDfvzSwhD/Q22m+MEY7Pp0tNj8wQu4/OB86v/ZMiD8TEHo/0/9ev8JH078NHMA8Wp9tP0H52z9WD1i/yXoeQPjpB7+9aQpA/1OtP36grb6KTUM/wjSFvuHLxz5RVqg/NCTtPqZVAEAbfNG/uKGgPkuxEj80sIQ/WAZLvq6Mtb4zoos+YaSIPwlhpL5THlw/NfLzPV24Tz6Jv2s/5gynPkMPo77zUoW+SuCKv82ycb+12xm+ajC+P9apzT5sa46/QKmaPMASar7eOcS/vgcsPB3Pj7/jxgQ+/2scP7ihoD5LsRI/aPR2v8N94z59iZ+9zYwIP6+niz/6nyq/Fcwkv+70RL+bmDG/oQ/+Piyw2r5wuH6+BgMRv3O11b+z2e09otTkPuCWILy9dlK/qx6wPvISeD6pEB9Axo3Evx3PUj0V0Qe+1KlUP/9rHD+4oaA+9mDfv2j0dr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACmV7o1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA6PKsPQAAAABzJfm/AAAAAJJYJL0AAAAAfa37PwAAAACAMkA9AAAAAJfT/j8AAAAAC9cRvgAAAABfZvW/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJZ/7NgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgOfnzr0AAAAAwGv+vwAAAAA5bAG8AAAAAEIq/j8AAAAAQ4TUPQAAAADI3QBAAAAAACZwB74AAAAAw33hvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABUmxzQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBYr/C9AAAAAAuZ9b8AAAAA3Rk+PQAAAAD0BfI/AAAAAEZOorwAAAAAMaH1PwAAAABDUQI+AAAAAN8L4L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD9ns22AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAgUn2PQAAAACREPq/AAAAAP1gdj0AAAAAs8HcPwAAAAAw0bu9AAAAAA/c6z8AAAAAhtrmPQAAAADYjum/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJMWFLOAy2yMAWyUTegDjAF0lEdAsOmpjQRf4XV9lChoBkdAjait/nW8RWgHTegDaAhHQLDqF4TsY2t1fZQoaAZHQI8kU2vStvJoB03oA2gIR0Cw607E5yU+dX2UKGgGR0CSQTv5xiobaAdN6ANoCEdAsOy7T9bX6XV9lChoBkdAliDxcZ9/jWgHTegDaAhHQLDx07DEWIp1fZQoaAZHQJLEJGe+VTtoB03oA2gIR0Cw8ni2UjcEdX2UKGgGR0CVugoIfKZEaAdN6ANoCEdAsPQ8Ma0hNnV9lChoBkdAh9d+jdpItmgHTegDaAhHQLD2dyf+S8t1fZQoaAZHQJJCrykKu0VoB03oA2gIR0Cw+4ahpQDWdX2UKGgGR0CSWs9eQdS3aAdN6ANoCEdAsPv0/yGzr3V9lChoBkdAlvbukUKzA2gHTegDaAhHQLD9KCcf/3p1fZQoaAZHQJAbzaVUuL9oB03oA2gIR0Cw/o7TYukDdX2UKGgGR0CWH98Hv+fiaAdN6ANoCEdAsQQGRA8jiXV9lChoBkdAme2t9Dx9X2gHTegDaAhHQLEEq6QeV9p1fZQoaAZHQJMnk9FF2FFoB03oA2gIR0CxBoslC1JEdX2UKGgGR0CWJdm7J4jbaAdN6ANoCEdAsQih8c+7lXV9lChoBkdAmHhn0f5k9WgHTegDaAhHQLENWwljVhF1fZQoaAZHQJUgE593KSxoB03oA2gIR0CxDcrB9Cu2dX2UKGgGR0CVesJZ4fOlaAdN6ANoCEdAsQ79zOoo/nV9lChoBkdAmfQYdMj/uWgHTegDaAhHQLEQbbHp8nh1fZQoaAZHQJma3t2LYPJoB03oA2gIR0CxFllVcUuddX2UKGgGR0CS7EUYKpkxaAdN6ANoCEdAsRcKLpA2RHV9lChoBkdAlr8eBczIm2gHTegDaAhHQLEY7QgcLjR1fZQoaAZHQJhN/VtoBaNoB03oA2gIR0CxGoBnOB1+dX2UKGgGR0CTU50WuX/paAdN6ANoCEdAsR9FpCa7VnV9lChoBkdAl9krNnoPkWgHTegDaAhHQLEft66asp51fZQoaAZHQJfdufseGPBoB03oA2gIR0CxIO3pjc2zdX2UKGgGR0CYfoorFwT/aAdN6ANoCEdAsSJTechC+nV9lChoBkdAmZq3PmganGgHTegDaAhHQLEorfgJkXl1fZQoaAZHQJhdgn4O+ZhoB03oA2gIR0CxKWOQZGaydX2UKGgGR0CZqrzr/sE8aAdN6ANoCEdAsSr3/zasZHV9lChoBkdAlONf1tfoimgHTegDaAhHQLEsYSyt3fR1fZQoaAZHQJKueALApKBoB03oA2gIR0CxMRgW3z+WdX2UKGgGR0Ca//cDKYAsaAdN6ANoCEdAsTGHVMEidXV9lChoBkdAl7g3Ux20RmgHTegDaAhHQLEyuKRuCPJ1fZQoaAZHQJYocqvvBrNoB03oA2gIR0CxNCBHww0wdX2UKGgGR0CY3TakRBeHaAdN6ANoCEdAsTryPq9oOHV9lChoBkdAmC59QTEiuGgHTegDaAhHQLE7l4rjHXF1fZQoaAZHQJbFicMEzO5oB03oA2gIR0CxPM6DPGADdX2UKGgGR0CXVu5mAbyZaAdN6ANoCEdAsT44mmce83V9lChoBkdAmZwZwXIlt2gHTegDaAhHQLFC3p7TlT51fZQoaAZHQJd3Oi9IwudoB03oA2gIR0CxQ06yWzF/dX2UKGgGR0CYfCpvP1L8aAdN6ANoCEdAsUSGr2g3+HV9lChoBkdAmZ5bQPZqVWgHTegDaAhHQLFGIn4wh4d1fZQoaAZHQJUOVTHbRF9oB03oA2gIR0CxTSOxGDtgdX2UKGgGR0CSq7E7GNrCaAdN6ANoCEdAsU2VAiV0LnV9lChoBkdAl1vyiZfD12gHTegDaAhHQLFOzBrvb491fZQoaAZHQJSTRmjCYTloB03oA2gIR0CxUDk2UB4mdX2UKGgGR0CRn6I/Z/TcaAdN6ANoCEdAsVTwjMV1wHV9lChoBkdAkB0MNH6MzmgHTegDaAhHQLFVbaAWi111fZQoaAZHQJQ1q1IAfdRoB03oA2gIR0CxVrBaLXMAdX2UKGgGR0CUfCo7muDBaAdN6ANoCEdAsVixs3yZr3V9lChoBkdAk7p1PacqfGgHTegDaAhHQLFfERpDeCV1fZQoaAZHQJII5vNu+AVoB03oA2gIR0CxX4L17IDHdX2UKGgGR0CYu3yimEXdaAdN6ANoCEdAsWC38AJb+3V9lChoBkdAlKqbcCYCyWgHTegDaAhHQLFiJUbDMvB1fZQoaAZHQJWidRNyo4xoB03oA2gIR0CxZtfn0TURdX2UKGgGR0CSkzhybQTmaAdN6ANoCEdAsWdIcBEKE3V9lChoBkdAlzUW/etSymgHTegDaAhHQLFo2toSL611fZQoaAZHQJOr2C5EtuloB03oA2gIR0CxauT1K5CodX2UKGgGR0CT2ys7dSEUaAdN6ANoCEdAsXDg/OdGzHV9lChoBkdAirKOQQtjC2gHTegDaAhHQLFxU6RQrMF1fZQoaAZHQJTUBzHS4ONoB03oA2gIR0CxcoEit7rtdX2UKGgGR0CRQiriVB2PaAdN6ANoCEdAsXPouzyBkXV9lChoBkdAlcwqgh8pkWgHTegDaAhHQLF4qCAMDwJ1fZQoaAZHQJO6tjNIK+loB03oA2gIR0CxeUt1dPcjdX2UKGgGR0CTvuMpPRAsaAdN6ANoCEdAsXsI/7iyZHV9lChoBkdAkamPwd8zAWgHTegDaAhHQLF9Gvuw5eZ1fZQoaAZHQJcoiwIMSbpoB03oA2gIR0CxgpXg1m8NdX2UKGgGR0CWP3irT6SDaAdN6ANoCEdAsYMDkn1FpnV9lChoBkdAlCSE078vVWgHTegDaAhHQLGEOl4TsY51fZQoaAZHQJXsdFuvUz9oB03oA2gIR0CxhaOp84PxdX2UKGgGR0CUnH7Xg9/0aAdN6ANoCEdAsYqmk1uR93V9lChoBkdAlJeXGsFMZmgHTegDaAhHQLGLRlAeJYV1fZQoaAZHQJLtu9f1HvtoB03oA2gIR0CxjPYeo1k2dX2UKGgGR0CUukEd/8VIaAdN6ANoCEdAsY8YzO5avHV9lChoBkdAkpNVRceKbmgHTegDaAhHQLGUMR3NcGF1fZQoaAZHQJWWt4Uvf0poB03oA2gIR0CxlKSeZof0dX2UKGgGR0CSVYYe1a4daAdN6ANoCEdAsZXZ44ZMtnV9lChoBkdAlNnub7TDwmgHTegDaAhHQLGXRyT6i0x1fZQoaAZHQJBYPP8hs69oB03oA2gIR0CxnKBLoOhCdX2UKGgGR0CXHDjmSyMUaAdN6ANoCEdAsZ0/+NtIkXV9lChoBkdAlDmAu7HyVmgHTegDaAhHQLGfEYwqRU51fZQoaAZHQJcNNmpVCHBoB03oA2gIR0CxoUGs/6frdX2UKGgGR0CWVOuFHrhSaAdN6ANoCEdAsaYNhJAdGXV9lChoBkdAljdyuZCv5mgHTegDaAhHQLGmfNxEORV1fZQoaAZHQJVRoGlhw2loB03oA2gIR0Cxp7myLQ5WdX2UKGgGR0CV1YuqWC2+aAdN6ANoCEdAsakjZOBUaXV9lChoBkdAlnwpeNT99GgHTegDaAhHQLGuu1jiGWV1fZQoaAZHQJXHQ94eLehoB03oA2gIR0Cxr2TwlSjydX2UKGgGR0CVuc2ZiNKiaAdN6ANoCEdAsbFHF6zE8HV9lChoBkdAlMtrT+ee4GgHTegDaAhHQLGzJGSpzcR1fZQoaAZHQJaTIz0pVjtoB03oA2gIR0Cxt+KN6w+udX2UKGgGR0CNU9u9eyAyaAdN6ANoCEdAsbhbs8gZCXV9lChoBkdAlJbEDEFW4mgHTegDaAhHQLG5ikRSP2h1fZQoaAZHQJiTD8uSOipoB03oA2gIR0CxuvHo5ggHdX2UKGgGR0CVUCFK02LpaAdN6ANoCEdAscD93W4EwHV9lChoBkdAlcd3LV4HHGgHTegDaAhHQLHBq7Lt/nZ1fZQoaAZHQJKTEcKgIyFoB03oA2gIR0Cxw4BxHXmOdX2UKGgGR0CVwKjurp7kaAdN6ANoCEdAscThKoQ4CXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8fe0eee0ddcc1bf0950adbb4585502659f6f96833df97b328a0958eeda4c2611
|
3 |
+
size 1078821
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1231.2103372172453, "std_reward": 85.02143862840565, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-24T02:10:50.413539"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:197705378ca5acca7041641ed74730359e4901f556bf7af17be697546920553c
|
3 |
+
size 2170
|