J-Raposo commited on
Commit
9c6c107
·
verified ·
1 Parent(s): bdc18c3

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +54 -167
README.md CHANGED
@@ -1,199 +1,86 @@
1
  ---
2
  library_name: transformers
3
- tags: []
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
 
9
 
 
 
10
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
 
 
 
 
 
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
 
 
 
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
 
 
 
35
 
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
  ### Direct Use
 
 
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
 
52
  ### Out-of-Scope Use
 
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
 
58
  ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
 
64
  ### Recommendations
 
 
 
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
 
194
 
195
- [More Information Needed]
 
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
 
1
  ---
2
  library_name: transformers
3
+ tags: [tokenizer, code, python, byte-level-bpe, gpt2-style]
4
  ---
5
 
6
+ # Model Card `J-Raposo/code-search-net-tokenizer`
7
 
8
+ ## Model name
9
+ **J-Raposo/code-search-net-tokenizer**
10
 
11
+ ## Short description
12
+ A GPT-2–style tokenizer (byte-level BPE) retrained on the CodeSearchNet (Python) dataset to better tokenize Python source code (identifiers, punctuation, docstrings, and common code tokens). Trained following the Hugging Face LLM course (Chapter 6, Section 1 — training/retraining a GPT-2 tokenizer).
13
 
14
+ ---
15
 
16
+ ## Model details
17
 
18
+ - **Author:** J-Raposo (Hugging Face username: `J-Raposo`)
19
+ - **Model type:** Tokenizer (Byte-level BPE, GPT-2 style)
20
+ - **Language(s):** Python (source code), English (comments & docstrings)
21
+ - **License:** [To be defined by repo owner — e.g., `mit`, `apache-2.0`]
22
+ - **Intended use:** Tokenization for code modeling tasks (code search, code completion, summarization, classification, and fine-tuning code LLMs on Python).
23
+ - **Not intended for:** Producing runnable or secure code without downstream model fine-tuning; this tokenizer only affects tokenization behavior, not model logic or correctness of generated code.
24
 
25
+ ---
26
 
27
+ ## Summary
28
+ This tokenizer is a byte-level BPE tokenizer (GPT-2 style) retrained on the CodeSearchNet `python` subset (loaded with `datasets.load_dataset("code_search_net", "python")`). It aims to produce more meaningful sub-token splits for Python source code by (a) preserving punctuation and operators as informative tokens, (b) reducing excessive fragmentation of common identifiers and API names, and (c) handling docstrings and comments so that natural language context is preserved for downstream models.
29
 
30
+ ---
 
 
 
 
 
 
31
 
32
+ ## Training data
33
+ - **Dataset:** CodeSearchNet — `python` subset (loaded via `datasets.load_dataset("code_search_net", "python")`).
34
+ - **Preprocessing:** Source files and docstrings were extracted. Common normalization steps applied (e.g., newline normalization). Comments and docstrings were retained to preserve natural language context alongside code.
35
+ - **Notes:** Tokenizer was trained only on the Python portion; tokenization quality for other languages (JavaScript, Java, C, etc.) may be lower.
36
 
37
+ ---
38
 
39
+ ## Tokenizer details / configuration
40
+ - **Tokenizer type:** Byte-level BPE (GPT-2–style / `tokenizers` fast API).
41
+ - **Vocabulary size:** 50,257 (GPT-2 default) — **replace with the actual vocab size if different**.
42
+ - **Special tokens:** standard GPT-2 tokens (e.g., ``) or custom tokens if you added any. Ensure `tokenizer_config.json` in the repo lists them.
43
+ - **Normalization:** Byte-level normalization (works with arbitrary byte sequences / UTF-8).
44
+ - **Files included:** `tokenizer.json` (preferred `tokenizers` fast format) or `vocab.json` + `merges.txt` (legacy), and `tokenizer_config.json`.
45
 
46
+ ---
47
 
48
+ ## Uses
49
 
50
  ### Direct Use
51
+ - Tokenize Python code and docstrings for input into language models.
52
+ - Use as a drop-in tokenizer when fine-tuning GPT-2–style or encoder-decoder models for code tasks if they support the tokenizer format.
53
 
54
+ ### Downstream Use
55
+ - Fine-tuning code generation or code search LLMs.
56
+ - Preprocessing pipelines for supervised tasks on code (classification, summarization, code-to-text).
57
+ - As a tokenizer for dataset preparation for model pretraining/finetuning on code corpora.
 
 
 
 
 
58
 
59
  ### Out-of-Scope Use
60
+ - This tokenizer alone does not produce correct or secure code — it only affects token representation. Use caution when deploying downstream models that generate or modify code; do not rely on tokenization to ensure correctness or security.
61
 
62
+ ---
 
 
63
 
64
  ## Bias, Risks, and Limitations
65
+ - **Data bias:** The tokenizer reflects distributional properties of public repositories in CodeSearchNet: common libraries, styles, and naming conventions are better represented than niche or private coding styles.
66
+ - **Technical limitations:** Training on the Python subset causes suboptimal tokenization for other languages. Extremely long or adversarial identifiers may still be split into many sub-tokens.
67
+ - **Downstream risks:** Tokenization decisions affect model training and generation; poor tokenization can amplify biases or lead to awkward/generated outputs in downstream models. Tokenizers do not mitigate issues like hallucinations, insecure code generation, or toxic outputs.
 
68
 
69
  ### Recommendations
70
+ - Use this tokenizer for Python-focused models or mixed pipelines where Python is dominant.
71
+ - Evaluate tokenization quality on your downstream tasks (e.g., token length distributions, OOV handling).
72
+ - If you plan to use proprietary source code for training, do not upload proprietary content to public repos — consider training a private tokenizer or using private HF repos.
73
 
74
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75
 
76
+ ## How to get started (load & use)
77
+ Load directly from the Hub after pushing the repo:
78
 
79
+ ```python
80
+ from transformers import AutoTokenizer
81
 
82
+ tokenizer = AutoTokenizer.from_pretrained("J-Raposo/code-search-net-tokenizer", use_fast=True)
83
 
84
+ code = "def add(a, b):\n return a + b"
85
+ enc = tokenizer(code, return_tensors="pt")
86
+ print(enc)