File size: 2,211 Bytes
d61b5ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: apache-2.0
base_model: google-t5/t5-base
tags:
- summarization
- generated_from_trainer
metrics:
- rouge
model-index:
- name: t5-base-question-answer-summarization
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-base-question-answer-summarization
This model is a fine-tuned version of [google-t5/t5-base](https://huggingface.co/google-t5/t5-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1424
- Rouge1: 85.4974
- Rouge2: 77.0571
- Rougel: 82.4125
- Rougelsum: 82.4757
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|
| 0.3381 | 1.0 | 526 | 0.1310 | 85.4136 | 77.2307 | 82.5493 | 82.5887 |
| 0.1221 | 2.0 | 1052 | 0.1291 | 85.5109 | 77.3495 | 82.5035 | 82.5448 |
| 0.1008 | 3.0 | 1578 | 0.1293 | 85.7918 | 77.3841 | 82.5218 | 82.5855 |
| 0.0861 | 4.0 | 2104 | 0.1312 | 85.8164 | 77.5711 | 82.5025 | 82.5955 |
| 0.075 | 5.0 | 2630 | 0.1358 | 85.769 | 77.3766 | 82.6532 | 82.691 |
| 0.069 | 6.0 | 3156 | 0.1361 | 85.417 | 76.9087 | 82.397 | 82.4857 |
| 0.0625 | 7.0 | 3682 | 0.1404 | 85.5539 | 77.0784 | 82.4147 | 82.445 |
| 0.0595 | 8.0 | 4208 | 0.1424 | 85.4974 | 77.0571 | 82.4125 | 82.4757 |
### Framework versions
- Transformers 4.40.0
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
|