File size: 2,211 Bytes
8d4e1fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
license: apache-2.0
base_model: google-t5/t5-base
tags:
- summarization
- generated_from_trainer
metrics:
- rouge
model-index:
- name: t5-base-question-answer-summarization
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# t5-base-question-answer-summarization

This model is a fine-tuned version of [google-t5/t5-base](https://huggingface.co/google-t5/t5-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1420
- Rouge1: 87.2659
- Rouge2: 79.1621
- Rougel: 84.0716
- Rougelsum: 84.0332

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|
| 0.3593        | 1.0   | 450  | 0.1339          | 87.0068 | 78.4882 | 83.5134 | 83.4528   |
| 0.121         | 2.0   | 900  | 0.1273          | 87.3363 | 79.1644 | 83.7472 | 83.7456   |
| 0.0982        | 3.0   | 1350 | 0.1314          | 87.0066 | 78.3475 | 83.0262 | 82.9739   |
| 0.084         | 4.0   | 1800 | 0.1322          | 87.1678 | 78.7514 | 83.4642 | 83.441    |
| 0.074         | 5.0   | 2250 | 0.1345          | 87.2618 | 79.114  | 83.9859 | 83.9444   |
| 0.0685        | 6.0   | 2700 | 0.1378          | 87.1497 | 79.0628 | 83.958  | 83.9482   |
| 0.0609        | 7.0   | 3150 | 0.1419          | 86.993  | 78.781  | 83.8076 | 83.7681   |
| 0.0591        | 8.0   | 3600 | 0.1420          | 87.2659 | 79.1621 | 84.0716 | 84.0332   |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2